Life's Little Mysteries

Where Does the Concept of Time Travel Come From?

Time; he's waiting in the wings.

Wormholes have been proposed as one possible means of traveling through time.

The dream of traveling through time is both ancient and universal. But where did humanity's fascination with time travel begin, and why is the idea so appealing?

The concept of time travel — moving through time the way we move through three-dimensional space — may in fact be hardwired into our perception of time . Linguists have recognized that we are essentially incapable of talking about temporal matters without referencing spatial ones. "In language — any language — no two domains are more intimately linked than space and time," wrote Israeli linguist Guy Deutscher in his 2005 book "The Unfolding of Language." "Even if we are not always aware of it, we invariably speak of time in terms of space, and this reflects the fact that we think of time in terms of space."

Deutscher reminds us that when we plan to meet a friend "around" lunchtime, we are using a metaphor, since lunchtime doesn't have any physical sides. He similarly points out that time can not literally be "long" or "short" like a stick, nor "pass" like a train, or even go "forward" or "backward" any more than it goes sideways, diagonal or down.

Related: Why Does Time Fly When You're Having Fun?

Perhaps because of this connection between space and time, the possibility that time can be experienced in different ways and traveled through has surprisingly early roots. One of the first known examples of time travel appears in the Mahabharata, an ancient Sanskrit epic poem compiled around 400 B.C., Lisa Yaszek, a professor of science fiction studies at the Georgia Institute of Technology in Atlanta, told Live Science 

In the Mahabharata is a story about King Kakudmi, who lived millions of years ago and sought a suitable husband for his beautiful and accomplished daughter, Revati. The two travel to the home of the creator god Brahma to ask for advice. But while in Brahma's plane of existence, they must wait as the god listens to a 20-minute song, after which Brahma explains that time moves differently in the heavens than on Earth. It turned out that "27 chatur-yugas" had passed, or more than 116 million years, according to an online summary , and so everyone Kakudmi and Revati had ever known, including family members and potential suitors, was dead. After this shock, the story closes on a somewhat happy ending in that Revati is betrothed to Balarama, twin brother of the deity Krishna. 

Time is fleeting

To Yaszek, the tale provides an example of what we now call time dilation , in which different observers measure different lengths of time based on their relative frames of reference, a part of Einstein's theory of relativity.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Such time-slip stories are widespread throughout the world, Yaszek said, citing a Middle Eastern tale from the first century BCE about a Jewish miracle worker who sleeps beneath a newly-planted carob tree and wakes up 70 years later to find it has now matured and borne fruit (carob trees are notorious for how long they take to produce their first harvest). Another instance can be found in an eighth-century Japanese fable about a fisherman named Urashima Tarō who travels to an undersea palace and falls in love with a princess. Tarō finds that, when he returns home, 100 years have passed, according to a translation of the tale published online by the University of South Florida . 

In the early-modern era of the 1700 and 1800s, the sleep-story version of time travel grew more popular, Yaszek said. Examples include the classic tale of Rip Van Winkle, as well as books like Edward Belamy's utopian 1888 novel "Looking Backwards," in which a man wakes up in the year 2000, and the H.G. Wells 1899 novel "The Sleeper Awakes," about a man who slumbers for centuries and wakes to a completely transformed London. 

Related: Science Fiction or Fact: Is Time Travel Possible ?

In other stories from this period, people also start to be able to move backward in time. In Mark Twain’s 1889 satire "A Connecticut Yankee in King Arthur's Court," a blow to the head propels an engineer back to the reign of the legendary British monarch. Objects that can send someone through time begin to appear as well, mainly clocks, such as in Edward Page Mitchell's 1881 story "The Clock that Went Backwards" or Lewis Carrol's 1889 children's fantasy "Sylvie and Bruno," where the characters possess a watch that is a type of time machine . 

The explosion of such stories during this era might come from the fact that people were "beginning to standardize time, and orient themselves to clocks more frequently," Yaszek said. 

Time after time

Wells provided one of the most enduring time-travel plots in his 1895 novella "The Time Machine," which included the innovation of a craft that can move forward and backward through long spans of time. "This is when we’re getting steam engines and trains and the first automobiles," Yaszek said. "I think it’s no surprise that Wells suddenly thinks: 'Hey, maybe we can use a vehicle to travel through time.'"

Because it is such a rich visual icon, many beloved time-travel stories written after this have included a striking time machine, Yaszek said, referencing The Doctor's blue police box — the TARDIS — in the long-running BBC series "Doctor Who," and "Back to the Future"'s silver luxury speedster, the DeLorean . 

More recently, time travel has been used to examine our relationship with the past, Yaszek said, in particular in pieces written by women and people of color. Octavia Butler's 1979 novel "Kindred" about a modern woman who visits her pre-Civil-War ancestors is "a marvelous story that really asks us to rethink black and white relations through history," she said. And a contemporary web series called " Send Me " involves an African-American psychic who can guide people back to antebellum times and witness slavery. 

"I'm really excited about stories like that," Yaszek said. "They help us re-see history from new perspectives."

Time travel has found a home in a wide variety of genres and media, including comedies such as "Groundhog Day" and "Bill and Ted's Excellent Adventure" as well as video games like Nintendo's "The Legend of Zelda: Majora's Mask" and the indie game "Braid." 

Yaszek suggested that this malleability and ubiquity speaks to time travel tales' ability to offer an escape from our normal reality. "They let us imagine that we can break free from the grip of linear time," she said. "And somehow get a new perspective on the human experience, either our own or humanity as a whole, and I think that feels so exciting to us." 

That modern people are often drawn to time-machine stories in particular might reflect the fact that we live in a technological world, she added. Yet time travel's appeal certainly has deeper roots, interwoven into the very fabric of our language and appearing in some of our earliest imaginings. 

"I think it's a way to make sense of the otherwise intangible and inexplicable, because it's hard to grasp time," Yaszek said. "But this is one of the final frontiers, the frontier of time, of life and death. And we're all moving forward, we're all traveling through time."

  • If There Were a Time Warp, How Would Physicists Find It?
  • Can Animals Tell Time?
  • Why Does Time Sometimes Fly When You're NOT Having Fun?

Originally published on Live Science .

Adam Mann

Adam Mann is a freelance journalist with over a decade of experience, specializing in astronomy and physics stories. He has a bachelor's degree in astrophysics from UC Berkeley. His work has appeared in the New Yorker, New York Times, National Geographic, Wall Street Journal, Wired, Nature, Science, and many other places. He lives in Oakland, California, where he enjoys riding his bike. 

30,000 years of history reveals that hard times boost human societies' resilience

'We're meeting people where they are': Graphic novels can help boost diversity in STEM, says MIT's Ritu Raman

Is hippo milk really pink?

Most Popular

  • 2 'Hostilities began in an extremely violent way': How chimp wars taught us murder and cruelty aren't just human traits
  • 3 EV batteries could last much longer thanks to new capacitor with 19-times higher energy density that scientists created by mistake
  • 4 2,500-year-old Illyrian helmet found in burial mound likely caused 'awe in the enemy'
  • 5 Record-shattering Tonga volcanic eruption wasn't triggered by what we thought, new study suggests
  • 2 The Gulf Stream stopped pumping nutrients during the last ice age — and the same could be happening now
  • 3 New mRNA vaccine for deadly brain cancer triggers a strong immune response
  • 4 See stunning reconstruction of ancient Egyptian mummy that languished at an Australian high school for a century

who created the time travel theory

Image that reads Space Place and links to spaceplace.nasa.gov.

Is Time Travel Possible?

We all travel in time! We travel one year in time between birthdays, for example. And we are all traveling in time at approximately the same speed: 1 second per second.

We typically experience time at one second per second. Credit: NASA/JPL-Caltech

NASA's space telescopes also give us a way to look back in time. Telescopes help us see stars and galaxies that are very far away . It takes a long time for the light from faraway galaxies to reach us. So, when we look into the sky with a telescope, we are seeing what those stars and galaxies looked like a very long time ago.

However, when we think of the phrase "time travel," we are usually thinking of traveling faster than 1 second per second. That kind of time travel sounds like something you'd only see in movies or science fiction books. Could it be real? Science says yes!

Image of galaxies, taken by the Hubble Space Telescope.

This image from the Hubble Space Telescope shows galaxies that are very far away as they existed a very long time ago. Credit: NASA, ESA and R. Thompson (Univ. Arizona)

How do we know that time travel is possible?

More than 100 years ago, a famous scientist named Albert Einstein came up with an idea about how time works. He called it relativity. This theory says that time and space are linked together. Einstein also said our universe has a speed limit: nothing can travel faster than the speed of light (186,000 miles per second).

Einstein's theory of relativity says that space and time are linked together. Credit: NASA/JPL-Caltech

What does this mean for time travel? Well, according to this theory, the faster you travel, the slower you experience time. Scientists have done some experiments to show that this is true.

For example, there was an experiment that used two clocks set to the exact same time. One clock stayed on Earth, while the other flew in an airplane (going in the same direction Earth rotates).

After the airplane flew around the world, scientists compared the two clocks. The clock on the fast-moving airplane was slightly behind the clock on the ground. So, the clock on the airplane was traveling slightly slower in time than 1 second per second.

Credit: NASA/JPL-Caltech

Can we use time travel in everyday life?

We can't use a time machine to travel hundreds of years into the past or future. That kind of time travel only happens in books and movies. But the math of time travel does affect the things we use every day.

For example, we use GPS satellites to help us figure out how to get to new places. (Check out our video about how GPS satellites work .) NASA scientists also use a high-accuracy version of GPS to keep track of where satellites are in space. But did you know that GPS relies on time-travel calculations to help you get around town?

GPS satellites orbit around Earth very quickly at about 8,700 miles (14,000 kilometers) per hour. This slows down GPS satellite clocks by a small fraction of a second (similar to the airplane example above).

Illustration of GPS satellites orbiting around Earth

GPS satellites orbit around Earth at about 8,700 miles (14,000 kilometers) per hour. Credit: GPS.gov

However, the satellites are also orbiting Earth about 12,550 miles (20,200 km) above the surface. This actually speeds up GPS satellite clocks by a slighter larger fraction of a second.

Here's how: Einstein's theory also says that gravity curves space and time, causing the passage of time to slow down. High up where the satellites orbit, Earth's gravity is much weaker. This causes the clocks on GPS satellites to run faster than clocks on the ground.

The combined result is that the clocks on GPS satellites experience time at a rate slightly faster than 1 second per second. Luckily, scientists can use math to correct these differences in time.

Illustration of a hand holding a phone with a maps application active.

If scientists didn't correct the GPS clocks, there would be big problems. GPS satellites wouldn't be able to correctly calculate their position or yours. The errors would add up to a few miles each day, which is a big deal. GPS maps might think your home is nowhere near where it actually is!

In Summary:

Yes, time travel is indeed a real thing. But it's not quite what you've probably seen in the movies. Under certain conditions, it is possible to experience time passing at a different rate than 1 second per second. And there are important reasons why we need to understand this real-world form of time travel.

If you liked this, you may like:

Illustration of a game controller that links to the Space Place Games menu.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Time Travel and Modern Physics

Time travel has been a staple of science fiction. With the advent of general relativity it has been entertained by serious physicists. But, especially in the philosophy literature, there have been arguments that time travel is inherently paradoxical. The most famous paradox is the grandfather paradox: you travel back in time and kill your grandfather, thereby preventing your own existence. To avoid inconsistency some circumstance will have to occur which makes you fail in this attempt to kill your grandfather. Doesn’t this require some implausible constraint on otherwise unrelated circumstances? We examine such worries in the context of modern physics.

1. Paradoxes Lost?

2. topology and constraints, 3. the general possibility of time travel in general relativity, 4. two toy models, 5. slightly more realistic models of time travel, 6. the possibility of time travel redux, 7. even if there are constraints, so what, 8. computational models, 9. quantum mechanics to the rescue, 10. conclusions, other internet resources, related entries.

  • Supplement: Remarks and Limitations on the Toy Models

Modern physics strips away many aspects of the manifest image of time. Time as it appears in the equations of classical mechanics has no need for a distinguished present moment, for example. Relativity theory leads to even sharper contrasts. It replaces absolute simultaneity, according to which it is possible to unambiguously determine the time order of distant events, with relative simultaneity: extending an “instant of time” throughout space is not unique, but depends on the state of motion of an observer. More dramatically, in general relativity the mathematical properties of time (or better, of spacetime)—its topology and geometry—depend upon how matter is arranged rather than being fixed once and for all. So physics can be, and indeed has to be, formulated without treating time as a universal, fixed background structure. Since general relativity represents gravity through spacetime geometry, the allowed geometries must be as varied as the ways in which matter can be arranged. Alongside geometrical models used to describe the solar system, black holes, and much else, the scope of variation extends to include some exotic structures unlike anything astrophysicists have observed. In particular, there are spacetime geometries with curves that loop back on themselves: closed timelike curves (CTCs), which describe the possible trajectory of an observer who returns exactly back to their earlier state—without any funny business, such as going faster than the speed of light. These geometries satisfy the relevant physical laws, the equations of general relativity, and in that sense time travel is physically possible.

Yet circular time generates paradoxes, familiar from science fiction stories featuring time travel: [ 1 ]

  • Consistency: Kurt plans to murder his own grandfather Adolph, by traveling along a CTC to an appropriate moment in the past. He is an able marksman, and waits until he has a clear shot at grandpa. Normally he would not miss. Yet if he succeeds, there is no way that he will then exist to plan and carry out the mission. Kurt pulls the trigger: what can happen?
  • Underdetermination: Suppose that Kurt first travels back in order to give his earlier self a copy of How to Build a Time Machine. This is the same book that allows him to build a time machine, which he then carries with him on his journey to the past. Who wrote the book?
  • Easy Knowledge: A fan of classical music enhances their computer with a circuit that exploits a CTC. This machine efficiently solves problems at a higher level of computational complexity than conventional computers, leading (among other things) to finding the smallest circuits that can generate Bach’s oeuvre—and to compose new pieces in the same style. Such easy knowledge is at odds with our understanding of our epistemic predicament. (This third paradox has not drawn as much attention.)

The first two paradoxes were once routinely taken to show that solutions with CTCs should be rejected—with charges varying from violating logic, to being “physically unreasonable”, to undermining the notion of free will. Closer analysis of the paradoxes has largely reversed this consensus. Physicists have discovered many solutions with CTCs and have explored their properties in pursuing foundational questions, such as whether physics is compatible with the idea of objective temporal passage (starting with Gödel 1949). Philosophers have also used time travel scenarios to probe questions about, among other things, causation, modality, free will, and identity (see, e.g., Earman 1972 and Lewis’s seminal 1976 paper).

We begin below with Consistency , turning to the other paradoxes in later sections. A standard, stone-walling response is to insist that the past cannot be changed, as a matter of logic, even by a time traveler (e.g., Gödel 1949, Clarke 1977, Horwich 1987). Adolph cannot both die and survive, as a matter of logic, so any scheme to alter the past must fail. In many of the best time travel fictions, the actions of a time traveler are constrained in novel and unexpected ways. Attempts to change the past fail, and they fail, often tragically, in just such a way that they set the stage for the time traveler’s self-defeating journey. The first question is whether there is an analog of the consistent story when it comes to physics in the presence of CTCs. As we will see, there is a remarkable general argument establishing the existence of consistent solutions. Yet a second question persists: why can’t time-traveling Kurt kill his own grandfather? Doesn’t the necessity of failures to change the past put unusual and unexpected constraints on time travelers, or objects that move along CTCs? The same argument shows that there are in fact no constraints imposed by the existence of CTCs, in some cases. After discussing this line of argument, we will turn to the palatability and further implications of such constraints if they are required, and then turn to the implications of quantum mechanics.

Wheeler and Feynman (1949) were the first to claim that the fact that nature is continuous could be used to argue that causal influences from later events to earlier events, as are made possible by time travel, will not lead to paradox without the need for any constraints. Maudlin (1990) showed how to make their argument precise and more general, and argued that nonetheless it was not completely general.

Imagine the following set-up. We start off having a camera with a black and white film ready to take a picture of whatever comes out of the time machine. An object, in fact a developed film, comes out of the time machine. We photograph it, and develop the film. The developed film is subsequently put in the time machine, and set to come out of the time machine at the time the picture is taken. This surely will create a paradox: the developed film will have the opposite distribution of black, white, and shades of gray, from the object that comes out of the time machine. For developed black and white films (i.e., negatives) have the opposite shades of gray from the objects they are pictures of. But since the object that comes out of the time machine is the developed film itself it we surely have a paradox.

However, it does not take much thought to realize that there is no paradox here. What will happen is that a uniformly gray picture will emerge, which produces a developed film that has exactly the same uniform shade of gray. No matter what the sensitivity of the film is, as long as the dependence of the brightness of the developed film depends in a continuous manner on the brightness of the object being photographed, there will be a shade of gray that, when photographed, will produce exactly the same shade of gray on the developed film. This is the essence of Wheeler and Feynman’s idea. Let us first be a bit more precise and then a bit more general.

For simplicity let us suppose that the film is always a uniform shade of gray (i.e., at any time the shade of gray does not vary by location on the film). The possible shades of gray of the film can then be represented by the (real) numbers from 0, representing pure black, to 1, representing pure white.

Let us now distinguish various stages in the chronological order of the life of the film. In stage \(S_1\) the film is young; it has just been placed in the camera and is ready to be exposed. It is then exposed to the object that comes out of the time machine. (That object in fact is a later stage of the film itself). By the time we come to stage \(S_2\) of the life of the film, it has been developed and is about to enter the time machine. Stage \(S_3\) occurs just after it exits the time machine and just before it is photographed. Stage \(S_4\) occurs after it has been photographed and before it starts fading away. Let us assume that the film starts out in stage \(S_1\) in some uniform shade of gray, and that the only significant change in the shade of gray of the film occurs between stages \(S_1\) and \(S_2\). During that period it acquires a shade of gray that depends on the shade of gray of the object that was photographed. In other words, the shade of gray that the film acquires at stage \(S_2\) depends on the shade of gray it has at stage \(S_3\). The influence of the shade of gray of the film at stage \(S_3\), on the shade of gray of the film at stage \(S_2\), can be represented as a mapping, or function, from the real numbers between 0 and 1 (inclusive), to the real numbers between 0 and 1 (inclusive). Let us suppose that the process of photography is such that if one imagines varying the shade of gray of an object in a smooth, continuous manner then the shade of gray of the developed picture of that object will also vary in a smooth, continuous manner. This implies that the function in question will be a continuous function. Now any continuous function from the real numbers between 0 and 1 (inclusive) to the real numbers between 0 and 1 (inclusive) must map at least one number to itself. One can quickly convince oneself of this by graphing such functions. For one will quickly see that any continuous function \(f\) from \([0,1]\) to \([0,1]\) must intersect the line \(x=y\) somewhere, and thus there must be at least one point \(x\) such that \(f(x)=x\). Such points are called fixed points of the function. Now let us think about what such a fixed point represents. It represents a shade of gray such that, when photographed, it will produce a developed film with exactly that same shade of gray. The existence of such a fixed point implies a solution to the apparent paradox.

Let us now be more general and allow color photography. One can represent each possible color of an object (of uniform color) by the proportions of blue, green and red that make up that color. (This is why television screens can produce all possible colors.) Thus one can represent all possible colors of an object by three points on three orthogonal lines \(x, y\) and \(z\), that is to say, by a point in a three-dimensional cube. This cube is also known as the “Cartesian product” of the three line segments. Now, one can also show that any continuous map from such a cube to itself must have at least one fixed point. So color photography can not be used to create time travel paradoxes either!

Even more generally, consider some system \(P\) which, as in the above example, has the following life. It starts in some state \(S_1\), it interacts with an object that comes out of a time machine (which happens to be its older self), it travels back in time, it interacts with some object (which happens to be its younger self), and finally it grows old and dies. Let us assume that the set of possible states of \(P\) can be represented by a Cartesian product of \(n\) closed intervals of the reals, i.e., let us assume that the topology of the state-space of \(P\) is isomorphic to a finite Cartesian product of closed intervals of the reals. Let us further assume that the development of \(P\) in time, and the dependence of that development on the state of objects that it interacts with, is continuous. Then, by a well-known fixed point theorem in topology (see, e.g., Hocking & Young 1961: 273), no matter what the nature of the interaction is, and no matter what the initial state of the object is, there will be at least one state \(S_3\) of the older system (as it emerges from the time travel machine) that will influence the initial state \(S_1\) of the younger system (when it encounters the older system) so that, as the younger system becomes older, it develops exactly into state \(S_3\). Thus without imposing any constraints on the initial state \(S_1\) of the system \(P\), we have shown that there will always be perfectly ordinary, non-paradoxical, solutions, in which everything that happens, happens according to the usual laws of development. Of course, there is looped causation, hence presumably also looped explanation, but what do you expect if there is looped time?

Unfortunately, for the fan of time travel, a little reflection suggests that there are systems for which the needed fixed point theorem does not hold. Imagine, for instance, that we have a dial that can only rotate in a plane. We are going to put the dial in the time machine. Indeed we have decided that if we see the later stage of the dial come out of the time machine set at angle \(x\), then we will set the dial to \(x+90\), and throw it into the time machine. Now it seems we have a paradox, since the mapping that consists of a rotation of all points in a circular state-space by 90 degrees does not have a fixed point. And why wouldn’t some state-spaces have the topology of a circle?

However, we have so far not used another continuity assumption which is also a reasonable assumption. So far we have only made the following demand: the state the dial is in at stage \(S_2\) must be a continuous function of the state of the dial at stage \(S_3\). But, the state of the dial at stage \(S_2\) is arrived at by taking the state of the dial at stage \(S_1\), and rotating it over some angle. It is not merely the case that the effect of the interaction, namely the state of the dial at stage \(S_2\), should be a continuous function of the cause, namely the state of the dial at stage \(S_3\). It is additionally the case that path taken to get there, the way the dial is rotated between stages \(S_1\) and \(S_2\) must be a continuous function of the state at stage \(S_3\). And, rather surprisingly, it turns out that this can not be done. Let us illustrate what the problem is before going to a more general demonstration that there must be a fixed point solution in the dial case.

Forget time travel for the moment. Suppose that you and I each have a watch with a single dial neither of which is running. My watch is set at 12. You are going to announce what your watch is set at. My task is going to be to adjust my watch to yours no matter what announcement you make. And my actions should have a continuous (single valued) dependence on the time that you announce. Surprisingly, this is not possible! For instance, suppose that if you announce “12”, then I achieve that setting on my watch by doing nothing. Now imagine slowly and continuously increasing the announced times, starting at 12. By continuity, I must achieve each of those settings by rotating my dial to the right. If at some point I switch and achieve the announced goal by a rotation of my dial to the left, I will have introduced a discontinuity in my actions, a discontinuity in the actions that I take as a function of the announced angle. So I will be forced, by continuity, to achieve every announcement by rotating the dial to the right. But, this rotation to the right will have to be abruptly discontinued as the announcements grow larger and I eventually approach 12 again, since I achieved 12 by not rotating the dial at all. So, there will be a discontinuity at 12 at the latest. In general, continuity of my actions as a function of announced times can not be maintained throughout if I am to be able to replicate all possible settings. Another way to see the problem is that one can similarly reason that, as one starts with 12, and imagines continuously making the announced times earlier, one will be forced, by continuity, to achieve the announced times by rotating the dial to the left. But the conclusions drawn from the assumption of continuous increases and the assumption of continuous decreases are inconsistent. So we have an inconsistency following from the assumption of continuity and the assumption that I always manage to set my watch to your watch. So, a dial developing according to a continuous dynamics from a given initial state, can not be set up so as to react to a second dial, with which it interacts, in such a way that it is guaranteed to always end up set at the same angle as the second dial. Similarly, it can not be set up so that it is guaranteed to always end up set at 90 degrees to the setting of the second dial. All of this has nothing to do with time travel. However, the impossibility of such set ups is what prevents us from enacting the rotation by 90 degrees that would create paradox in the time travel setting.

Let us now give the positive result that with such dials there will always be fixed point solutions, as long as the dynamics is continuous. Let us call the state of the dial before it interacts with its older self the initial state of the dial. And let us call the state of the dial after it emerges from the time machine the final state of the dial. There is also an intermediate state of the dial, after it interacts with its older self and before it is put into the time machine. We can represent the initial or intermediate states of the dial, before it goes into the time machine, as an angle \(x\) in the horizontal plane and the final state of the dial, after it comes out of the time machine, as an angle \(y\) in the vertical plane. All possible \(\langle x,y\rangle\) pairs can thus be visualized as a torus with each \(x\) value picking out a vertical circular cross-section and each \(y\) picking out a point on that cross-section. See figure 1 .

Figure 1 [An extended description of figure 1 is in the supplement.]

Suppose that the dial starts at angle \(i\) which picks out vertical circle \(I\) on the torus. The initial angle \(i\) that the dial is at before it encounters its older self, and the set of all possible final angles that the dial can have when it emerges from the time machine is represented by the circle \(I\) on the torus (see figure 1 ). Given any possible angle of the emerging dial, the dial initially at angle \(i\) will develop to some other angle. One can picture this development by rotating each point on \(I\) in the horizontal direction by the relevant amount. Since the rotation has to depend continuously on the angle of the emerging dial, circle \(I\) during this development will deform into some loop \(L\) on the torus. Loop \(L\) thus represents all possible intermediate angles \(x\) that the dial is at when it is thrown into the time machine, given that it started at angle \(i\) and then encountered a dial (its older self) which was at angle \(y\) when it emerged from the time machine. We therefore have consistency if \(x=y\) for some \(x\) and \(y\) on loop \(L\). Now, let loop \(C\) be the loop which consists of all the points on the torus for which \(x=y\). Ring \(I\) intersects \(C\) at point \(\langle i,i\rangle\). Obviously any continuous deformation of \(I\) must still intersect \(C\) somewhere. So \(L\) must intersect \(C\) somewhere, say at \(\langle j,j\rangle\). But that means that no matter how the development of the dial starting at \(I\) depends on the angle of the emerging dial, there will be some angle for the emerging dial such that the dial will develop exactly into that angle (by the time it enters the time machine) under the influence of that emerging dial. This is so no matter what angle one starts with, and no matter how the development depends on the angle of the emerging dial. Thus even for a circular state-space there are no constraints needed other than continuity.

Unfortunately there are state-spaces that escape even this argument. Consider for instance a pointer that can be set to all values between 0 and 1, where 0 and 1 are not possible values. That is, suppose that we have a state-space that is isomorphic to an open set of real numbers. Now suppose that we have a machine that sets the pointer to half the value that the pointer is set at when it emerges from the time machine.

Figure 2 [An extended description of figure 2 is in the supplement.]

Suppose the pointer starts at value \(I\). As before we can represent the combination of this initial position and all possible final positions by the line \(I\). Under the influence of the pointer coming out of the time machine the pointer value will develop to a value that equals half the value of the final value that it encountered. We can represent this development as the continuous deformation of line \(I\) into line \(L\), which is indicated by the arrows in figure 2 . This development is fully continuous. Points \(\langle x,y\rangle\) on line \(I\) represent the initial position \(x=I\) of the (young) pointer, and the position \(y\) of the older pointer as it emerges from the time machine. Points \(\langle x,y\rangle\) on line \(L\) represent the position \(x\) that the younger pointer should develop into, given that it encountered the older pointer emerging from the time machine set at position \(y\). Since the pointer is designed to develop to half the value of the pointer that it encounters, the line \(L\) corresponds to \(x=1/2 y\). We have consistency if there is some point such that it develops into that point, if it encounters that point. Thus, we have consistency if there is some point \(\langle x,y\rangle\) on line \(L\) such that \(x=y\). However, there is no such point: lines \(L\) and \(C\) do not intersect. Thus there is no consistent solution, despite the fact that the dynamics is fully continuous.

Of course if 0 were a possible value, \(L\) and \(C\) would intersect at 0. This is surprising and strange: adding one point to the set of possible values of a quantity here makes the difference between paradox and peace. One might be tempted to just add the extra point to the state-space in order to avoid problems. After all, one might say, surely no measurements could ever tell us whether the set of possible values includes that exact point or not. Unfortunately there can be good theoretical reasons for supposing that some quantity has a state-space that is open: the set of all possible speeds of massive objects in special relativity surely is an open set, since it includes all speeds up to, but not including, the speed of light. Quantities that have possible values that are not bounded also lead to counter examples to the presented fixed point argument. And it is not obvious to us why one should exclude such possibilities. So the argument that no constraints are needed is not fully general.

An interesting question of course is: exactly for which state-spaces must there be such fixed points? The arguments above depend on a well-known fixed point theorem (due to Schauder) that guarantees the existence of a fixed point for compact, convex state spaces. We do not know what subsequent extensions of this result imply regarding fixed points for a wider variety of systems, or whether there are other general results along these lines. (See Kutach 2003 for more on this issue.)

A further interesting question is whether this line of argument is sufficient to resolve Consistency (see also Dowe 2007). When they apply, these results establish the existence of a solution, such as the shade of uniform gray in the first example. But physicists routinely demand more than merely the existence of a solution, namely that solutions to the equations are stable—such that “small” changes of the initial state lead to “small” changes of the resulting trajectory. (Clarifying the two senses of “small” in this statement requires further work, specifying the relevant topology.) Stability in this sense underwrites the possibility of applying equations to real systems given our inability to fix initial states with indefinite precision. (See Fletcher 2020 for further discussion.) The fixed point theorems guarantee that for an initial state \(S_1\) there is a solution, but this solution may not be “close” to the solution for a nearby initial state, \(S'\). We are not aware of any proofs that the solutions guaranteed to exist by the fixed point theorems are also stable in this sense.

Time travel has recently been discussed quite extensively in the context of general relativity. General relativity places few constraints on the global structure of space and time. This flexibility leads to a possibility first described in print by Hermann Weyl:

Every world-point is the origin of the double-cone of the active future and the passive past [i.e., the two lobes of the light cone]. Whereas in the special theory of relativity these two portions are separated by an intervening region, it is certainly possible in the present case [i.e., general relativity] for the cone of the active future to overlap with that of the passive past; so that, in principle, it is possible to experience events now that will in part be an effect of my future resolves and actions. Moreover, it is not impossible for a world-line (in particular, that of my body), although it has a timelike direction at every point, to return to the neighborhood of a point which it has already once passed through. (Weyl 1918/1920 [1952: 274])

A time-like curve is simply a space-time trajectory such that the speed of light is never equaled or exceeded along this trajectory. Time-like curves represent possible trajectories of ordinary objects. In general relativity a curve that is everywhere timelike locally can nonetheless loop back on itself, forming a CTC. Weyl makes the point vividly in terms of the light cones: along such a curve, the future lobe of the light cone (the “active future”) intersects the past lobe of the light cone (the “passive past”). Traveling along such a curve one would never exceed the speed of light, and yet after a certain amount of (proper) time one would return to a point in space-time that one previously visited. Or, by staying close to such a CTC, one could come arbitrarily close to a point in space-time that one previously visited. General relativity, in a straightforward sense, allows time travel: there appear to be many space-times compatible with the fundamental equations of general relativity in which there are CTC’s. Space-time, for instance, could have a Minkowski metric everywhere, and yet have CTC’s everywhere by having the temporal dimension (topologically) rolled up as a circle. Or, one can have wormhole connections between different parts of space-time which allow one to enter “mouth \(A\)” of such a wormhole connection, travel through the wormhole, exit the wormhole at “mouth \(B\)” and re-enter “mouth \(A\)” again. CTCs can even arise when the spacetime is topologically \(\mathbb{R}^4\), due to the “tilting” of light cones produced by rotating matter (as in Gödel 1949’s spacetime).

General relativity thus appears to provide ample opportunity for time travel. Note that just because there are CTC’s in a space-time, this does not mean that one can get from any point in the space-time to any other point by following some future directed timelike curve—there may be insurmountable practical obstacles. In Gödel’s spacetime, it is the case that there are CTCs passing through every point in the spacetime. Yet these CTCs are not geodesics, so traversing them requires acceleration. Calculations of the minimal fuel required to travel along the appropriate curve should discourage any would-be time travelers (Malament 1984, 1985; Manchak 2011). But more generally CTCs may be confined to smaller regions; some parts of space-time can have CTC’s while other parts do not. Let us call the part of a space-time that has CTC’s the “time travel region” of that space-time, while calling the rest of that space-time the “normal region”. More precisely, the “time travel region” consists of all the space-time points \(p\) such that there exists a (non-zero length) timelike curve that starts at \(p\) and returns to \(p\). Now let us turn to examining space-times with CTC’s a bit more closely for potential problems.

In order to get a feeling for the sorts of implications that closed timelike curves can have, it may be useful to consider two simple models. In space-times with closed timelike curves the traditional initial value problem cannot be framed in the usual way. For it presupposes the existence of Cauchy surfaces, and if there are CTCs then no Cauchy surface exists. (A Cauchy surface is a spacelike surface such that every inextendable timelike curve crosses it exactly once. One normally specifies initial conditions by giving the conditions on such a surface.) Nonetheless, if the topological complexities of the manifold are appropriately localized, we can come quite close. Let us call an edgeless spacelike surface \(S\) a quasi-Cauchy surface if it divides the rest of the manifold into two parts such that

  • every point in the manifold can be connected by a timelike curve to \(S\), and
  • any timelike curve which connects a point in one region to a point in the other region intersects \(S\) exactly once.

It is obvious that a quasi-Cauchy surface must entirely inhabit the normal region of the space-time; if any point \(p\) of \(S\) is in the time travel region, then any timelike curve which intersects \(p\) can be extended to a timelike curve which intersects \(S\) near \(p\) again. In extreme cases of time travel, a model may have no normal region at all (e.g., Minkowski space-time rolled up like a cylinder in a time-like direction), in which case our usual notions of temporal precedence will not apply. But temporal anomalies like wormholes (and time machines) can be sufficiently localized to permit the existence of quasi-Cauchy surfaces.

Given a timelike orientation, a quasi-Cauchy surface unproblematically divides the manifold into its past (i.e., all points that can be reached by past-directed timelike curves from \(S)\) and its future (ditto mutatis mutandis ). If the whole past of \(S\) is in the normal region of the manifold, then \(S\) is a partial Cauchy surface : every inextendable timelike curve which exists to the past of \(S\) intersects \(S\) exactly once, but (if there is time travel in the future) not every inextendable timelike curve which exists to the future of \(S\) intersects \(S\). Now we can ask a particularly clear question: consider a manifold which contains a time travel region, but also has a partial Cauchy surface \(S\), such that all of the temporal funny business is to the future of \(S\). If all you could see were \(S\) and its past, you would not know that the space-time had any time travel at all. The question is: are there any constraints on the sort of data which can be put on \(S\) and continued to a global solution of the dynamics which are different from the constraints (if any) on the data which can be put on a Cauchy surface in a simply connected manifold and continued to a global solution? If there is time travel to our future, might we we able to tell this now, because of some implied oddity in the arrangement of present things?

It is not at all surprising that there might be constraints on the data which can be put on a locally space-like surface which passes through the time travel region: after all, we never think we can freely specify what happens on a space-like surface and on another such surface to its future, but in this case the surface at issue lies to its own future. But if there were particular constraints for data on a partial Cauchy surface then we would apparently need to have to rule out some sorts of otherwise acceptable states on \(S\) if there is to be time travel to the future of \(S\). We then might be able to establish that there will be no time travel in the future by simple inspection of the present state of the universe. As we will see, there is reason to suspect that such constraints on the partial Cauchy surface are non-generic. But we are getting ahead of ourselves: first let’s consider the effect of time travel on a very simple dynamics.

The simplest possible example is the Newtonian theory of perfectly elastic collisions among equally massive particles in one spatial dimension. The space-time is two-dimensional, so we can represent it initially as the Euclidean plane, and the dynamics is completely specified by two conditions. When particles are traveling freely, their world lines are straight lines in the space-time, and when two particles collide, they exchange momenta, so the collision looks like an “\(X\)” in space-time, with each particle changing its momentum at the impact. [ 2 ] The dynamics is purely local, in that one can check that a set of world-lines constitutes a model of the dynamics by checking that the dynamics is obeyed in every arbitrarily small region. It is also trivial to generate solutions from arbitrary initial data if there are no CTCs: given the initial positions and momenta of a set of particles, one simply draws a straight line from each particle in the appropriate direction and continues it indefinitely. Once all the lines are drawn, the worldline of each particle can be traced from collision to collision. The boundary value problem for this dynamics is obviously well-posed: any set of data at an instant yields a unique global solution, constructed by the method sketched above.

What happens if we change the topology of the space-time by hand to produce CTCs? The simplest way to do this is depicted in figure 3 : we cut and paste the space-time so it is no longer simply connected by identifying the line \(L-\) with the line \(L+\). Particles “going in” to \(L+\) from below “emerge” from \(L-\) , and particles “going in” to \(L-\) from below “emerge” from \(L+\).

Figure 3: Inserting CTCs by Cut and Paste. [An extended description of figure 3 is in the supplement.]

How is the boundary-value problem changed by this alteration in the space-time? Before the cut and paste, we can put arbitrary data on the simultaneity slice \(S\) and continue it to a unique solution. After the change in topology, \(S\) is no longer a Cauchy surface, since a CTC will never intersect it, but it is a partial Cauchy surface. So we can ask two questions. First, can arbitrary data on \(S\) always be continued to a global solution? Second, is that solution unique? If the answer to the first question is \(no\), then we have a backward-temporal constraint: the existence of the region with CTCs places constraints on what can happen on \(S\) even though that region lies completely to the future of \(S\). If the answer to the second question is \(no\), then we have an odd sort of indeterminism, analogous to the unwritten book: the complete physical state on \(S\) does not determine the physical state in the future, even though the local dynamics is perfectly deterministic and even though there is no other past edge to the space-time region in \(S\)’s future (i.e., there is nowhere else for boundary values to come from which could influence the state of the region).

In this case the answer to the first question is yes and to the second is no : there are no constraints on the data which can be put on \(S\), but those data are always consistent with an infinitude of different global solutions. The easy way to see that there always is a solution is to construct the minimal solution in the following way. Start drawing straight lines from \(S\) as required by the initial data. If a line hits \(L-\) from the bottom, just continue it coming out of the top of \(L+\) in the appropriate place, and if a line hits \(L+\) from the bottom, continue it emerging from \(L-\) at the appropriate place. Figure 4 represents the minimal solution for a single particle which enters the time-travel region from the left:

Figure 4: The Minimal Solution. [An extended description of figure 4 is in the supplement.]

The particle “travels back in time” three times. It is obvious that this minimal solution is a global solution, since the particle always travels inertially.

But the same initial state on \(S\) is also consistent with other global solutions. The new requirement imposed by the topology is just that the data going into \(L+\) from the bottom match the data coming out of \(L-\) from the top, and the data going into \(L-\) from the bottom match the data coming out of \(L+\) from the top. So we can add any number of vertical lines connecting \(L-\) and \(L+\) to a solution and still have a solution. For example, adding a few such lines to the minimal solution yields:

Figure 5: A Non-Minimal Solution. [An extended description of figure 5 is in the supplement.]

The particle now collides with itself twice: first before it reaches \(L+\) for the first time, and again shortly before it exits the CTC region. From the particle’s point of view, it is traveling to the right at a constant speed until it hits an older version of itself and comes to rest. It remains at rest until it is hit from the right by a younger version of itself, and then continues moving off, and the same process repeats later. It is clear that this is a global model of the dynamics, and that any number of distinct models could be generating by varying the number and placement of vertical lines.

Knowing the data on \(S\), then, gives us only incomplete information about how things will go for the particle. We know that the particle will enter the CTC region, and will reach \(L+\), we know that it will be the only particle in the universe, we know exactly where and with what speed it will exit the CTC region. But we cannot determine how many collisions the particle will undergo (if any), nor how long (in proper time) it will stay in the CTC region. If the particle were a clock, we could not predict what time it would indicate when exiting the region. Furthermore, the dynamics gives us no handle on what to think of the various possibilities: there are no probabilities assigned to the various distinct possible outcomes.

Changing the topology has changed the mathematics of the situation in two ways, which tend to pull in opposite directions. On the one hand, \(S\) is no longer a Cauchy surface, so it is perhaps not surprising that data on \(S\) do not suffice to fix a unique global solution. But on the other hand, there is an added constraint: data “coming out” of \(L-\) must exactly match data “going in” to \(L+\), even though what comes out of \(L-\) helps to determine what goes into \(L+\). This added consistency constraint tends to cut down on solutions, although in this case the additional constraint is more than outweighed by the freedom to consider various sorts of data on \({L+}/{L-}\).

The fact that the extra freedom outweighs the extra constraint also points up one unexpected way that the supposed paradoxes of time travel may be overcome. Let’s try to set up a paradoxical situation using the little closed time loop above. If we send a single particle into the loop from the left and do nothing else, we know exactly where it will exit the right side of the time travel region. Now suppose we station someone at the other side of the region with the following charge: if the particle should come out on the right side, the person is to do something to prevent the particle from going in on the left in the first place. In fact, this is quite easy to do: if we send a particle in from the right, it seems that it can exit on the left and deflect the incoming left-hand particle.

Carrying on our reflection in this way, we further realize that if the particle comes out on the right, we might as well send it back in order to deflect itself from entering in the first place. So all we really need to do is the following: set up a perfectly reflecting particle mirror on the right-hand side of the time travel region, and launch the particle from the left so that— if nothing interferes with it —it will just barely hit \(L+\). Our paradox is now apparently complete. If, on the one hand, nothing interferes with the particle it will enter the time-travel region on the left, exit on the right, be reflected from the mirror, re-enter from the right, and come out on the left to prevent itself from ever entering. So if it enters, it gets deflected and never enters. On the other hand, if it never enters then nothing goes in on the left, so nothing comes out on the right, so nothing is reflected back, and there is nothing to deflect it from entering. So if it doesn’t enter, then there is nothing to deflect it and it enters. If it enters, then it is deflected and doesn’t enter; if it doesn’t enter then there is nothing to deflect it and it enters: paradox complete.

But at least one solution to the supposed paradox is easy to construct: just follow the recipe for constructing the minimal solution, continuing the initial trajectory of the particle (reflecting it the mirror in the obvious way) and then read of the number and trajectories of the particles from the resulting diagram. We get the result of figure 6 :

Figure 6: Resolving the “Paradox”. [An extended description of figure 6 is in the supplement.]

As we can see, the particle approaching from the left never reaches \(L+\): it is deflected first by a particle which emerges from \(L-\). But it is not deflected by itself , as the paradox suggests, it is deflected by another particle. Indeed, there are now four particles in the diagram: the original particle and three particles which are confined to closed time-like curves. It is not the leftmost particle which is reflected by the mirror, nor even the particle which deflects the leftmost particle; it is another particle altogether.

The paradox gets it traction from an incorrect presupposition. If there is only one particle in the world at \(S\) then there is only one particle which could participate in an interaction in the time travel region: the single particle would have to interact with its earlier (or later) self. But there is no telling what might come out of \(L-\): the only requirement is that whatever comes out must match what goes in at \(L+\). So if you go to the trouble of constructing a working time machine, you should be prepared for a different kind of disappointment when you attempt to go back and kill yourself: you may be prevented from entering the machine in the first place by some completely unpredictable entity which emerges from it. And once again a peculiar sort of indeterminism appears: if there are many self-consistent things which could prevent you from entering, there is no telling which is even likely to materialize. This is just like the case of the unwritten book: the book is never written, so nothing determines what fills its pages.

So when the freedom to put data on \(L-\) outweighs the constraint that the same data go into \(L+\), instead of paradox we get an embarrassment of riches: many solution consistent with the data on \(S\), or many possible books. To see a case where the constraint “outweighs” the freedom, we need to construct a very particular, and frankly artificial, dynamics and topology. Consider the space of all linear dynamics for a scalar field on a lattice. (The lattice can be though of as a simple discrete space-time.) We will depict the space-time lattice as a directed graph. There is to be a scalar field defined at every node of the graph, whose value at a given node depends linearly on the values of the field at nodes which have arrows which lead to it. Each edge of the graph can be assigned a weighting factor which determines how much the field at the input node contributes to the field at the output node. If we name the nodes by the letters a , b , c , etc., and the edges by their endpoints in the obvious way, then we can label the weighting factors by the edges they are associated with in an equally obvious way.

Suppose that the graph of the space-time lattice is acyclic , as in figure 7 . (A graph is Acyclic if one can not travel in the direction of the arrows and go in a loop.)

Figure 7: An Acyclic Lattice. [An extended description of figure 7 is in the supplement.]

It is easy to regard a set of nodes as the analog of a Cauchy surface, e.g., the set \(\{a, b, c\}\), and it is obvious if arbitrary data are put on those nodes the data will generate a unique solution in the future. [ 3 ] If the value of the field at node \(a\) is 3 and at node \(b\) is 7, then its value at node \(d\) will be \(3W_{ad}\) and its value at node \(e\) will be \(3W_{ae} + 7W_{be}\). By varying the weighting factors we can adjust the dynamics, but in an acyclic graph the future evolution of the field will always be unique.

Let us now again artificially alter the topology of the lattice to admit CTCs, so that the graph now is cyclic. One of the simplest such graphs is depicted in figure 8 : there are now paths which lead from \(z\) back to itself, e.g., \(z\) to \(y\) to \(z\).

Figure 8: Time Travel on a Lattice. [An extended description of figure 8 is in the supplement.]

Can we now put arbitrary data on \(v\) and \(w\), and continue that data to a global solution? Will the solution be unique?

In the generic case, there will be a solution and the solution will be unique. The equations for the value of the field at \(x, y\), and \(z\) are:

Solving these equations for \(z\) yields

which gives a unique value for \(z\) in the generic case. But looking at the space of all possible dynamics for this lattice (i.e., the space of all possible weighting factors), we find a singularity in the case where \(1-W_{zx}W_{xz} - W_{zy}W_{yz} = 0\). If we choose weighting factors in just this way, then arbitrary data at \(v\) and \(w\) cannot be continued to a global solution. Indeed, if the scalar field is everywhere non-negative, then this particular choice of dynamics puts ironclad constraints on the value of the field at \(v\) and \(w\): the field there must be zero (assuming \(W_{vx}\) and \(W_{wy}\) to be non-zero), and similarly all nodes in their past must have field value zero. If the field can take negative values, then the values at \(v\) and \(w\) must be so chosen that \(vW_{vx}W_{xz} = -wW_{wy}W_{yz}\). In either case, the field values at \(v\) and \(w\) are severely constrained by the existence of the CTC region even though these nodes lie completely to the past of that region. It is this sort of constraint which we find to be unlike anything which appears in standard physics.

Our toy models suggest three things. The first is that it may be impossible to prove in complete generality that arbitrary data on a partial Cauchy surface can always be continued to a global solution: our artificial case provides an example where it cannot. The second is that such odd constraints are not likely to be generic: we had to delicately fine-tune the dynamics to get a problem. The third is that the opposite problem, namely data on a partial Cauchy surface being consistent with many different global solutions, is likely to be generic: we did not have to do any fine-tuning to get this result.

This third point leads to a peculiar sort of indeterminism, illustrated by the case of the unwritten book: the entire state on \(S\) does not determine what will happen in the future even though the local dynamics is deterministic and there are no other “edges” to space-time from which data could influence the result. What happens in the time travel region is constrained but not determined by what happens on \(S\), and the dynamics does not even supply any probabilities for the various possibilities. The example of the photographic negative discussed in section 2, then, seems likely to be unusual, for in that case there is a unique fixed point for the dynamics, and the set-up plus the dynamical laws determine the outcome. In the generic case one would rather expect multiple fixed points, with no room for anything to influence, even probabilistically, which would be realized. (See the supplement on

Remarks and Limitations on the Toy Models .

It is ironic that time travel should lead generically not to contradictions or to constraints (in the normal region) but to underdetermination of what happens in the time travel region by what happens everywhere else (an underdetermination tied neither to a probabilistic dynamics nor to a free edge to space-time). The traditional objection to time travel is that it leads to contradictions: there is no consistent way to complete an arbitrarily constructed story about how the time traveler intends to act. Instead, though, it appears that the more significant problem is underdetermination: the story can be consistently completed in many different ways.

Echeverria, Klinkhammer, and Thorne (1991) considered the case of 3-dimensional single hard spherical ball that can go through a single time travel wormhole so as to collide with its younger self.

Figure 9 [An extended description of figure 9 is in the supplement.]

The threat of paradox in this case arises in the following form. Consider the initial trajectory of a ball as it approaches the time travel region. For some initial trajectories, the ball does not undergo a collision before reaching mouth 1, but upon exiting mouth 2 it will collide with its earlier self. This leads to a contradiction if the collision is strong enough to knock the ball off its trajectory and deflect it from entering mouth 1. Of course, the Wheeler-Feynman strategy is to look for a “glancing blow” solution: a collision which will produce exactly the (small) deviation in trajectory of the earlier ball that produces exactly that collision. Are there always such solutions? [ 4 ]

Echeverria, Klinkhammer & Thorne found a large class of initial trajectories that have consistent “glancing blow” continuations, and found none that do not (but their search was not completely general). They did not produce a rigorous proof that every initial trajectory has a consistent continuation, but suggested that it is very plausible that every initial trajectory has a consistent continuation. That is to say, they have made it very plausible that, in the billiard ball wormhole case, the time travel structure of such a wormhole space-time does not result in constraints on states on spacelike surfaces in the non-time travel region.

In fact, as one might expect from our discussion in the previous section, they found the opposite problem from that of inconsistency: they found underdetermination. For a large class of initial trajectories there are multiple different consistent “glancing blow” continuations of that trajectory (many of which involve multiple wormhole traversals). For example, if one initially has a ball that is traveling on a trajectory aimed straight between the two mouths, then one obvious solution is that the ball passes between the two mouths and never time travels. But another solution is that the younger ball gets knocked into mouth 1 exactly so as to come out of mouth 2 and produce that collision. Echeverria et al. do not note the possibility (which we pointed out in the previous section) of the existence of additional balls in the time travel region. We conjecture (but have no proof) that for every initial trajectory of \(A\) there are some, and generically many, multiple-ball continuations.

Friedman, Morris, et al. (1990) examined the case of source-free non-self-interacting scalar fields traveling through such a time travel wormhole and found that no constraints on initial conditions in the non-time travel region are imposed by the existence of such time travel wormholes. In general there appear to be no known counter examples to the claim that in “somewhat realistic” time-travel space-times with a partial Cauchy surface there are no constraints imposed on the state on such a partial Cauchy surface by the existence of CTC’s. (See, e.g., Friedman & Morris 1991; Thorne 1994; Earman 1995; Earman, Smeenk, & Wüthrich 2009; and Dowe 2007.)

How about the issue of constraints in the time travel region \(T\)? Prima facie , constraints in such a region would not appear to be surprising. But one might still expect that there should be no constraints on states on a spacelike surface, provided one keeps the surface “small enough”. In the physics literature the following question has been asked: for any point \(p\) in \(T\), and any space-like surface \(S\) that includes \(p\) is there a neighborhood \(E\) of \(p\) in \(S\) such that any solution on \(E\) can be extended to a solution on the whole space-time? With respect to this question, there are some simple models in which one has this kind of extendability of local solutions to global ones, and some simple models in which one does not have such extendability, with no clear general pattern. The technical mathematical problems are amplified by the more conceptual problem of what it might mean to say that one could create a situation which forces the creation of closed timelike curves. (See, e.g., Yurtsever 1990; Friedman, Morris, et al. 1990; Novikov 1992; Earman 1995; and Earman, Smeenk, & Wüthrich 2009). What are we to think of all of this?

The toy models above all treat billiard balls, fields, and other objects propagating through a background spacetime with CTCs. Even if we can show that a consistent solution exists, there is a further question: what kind of matter and dynamics could generate CTCs to begin with? There are various solutions of Einstein’s equations with CTCs, but how do these exotic spacetimes relate to the models actually used in describing the world? In other words, what positive reasons might we have to take CTCs seriously as a feature of the actual universe, rather than an exotic possibility of primarily mathematical interest?

We should distinguish two different kinds of “possibility” that we might have in mind in posing such questions (following Stein 1970). First, we can consider a solution as a candidate cosmological model, describing the (large-scale gravitational degrees of freedom of the) entire universe. The case for ruling out spacetimes with CTCs as potential cosmological models strikes us as, surprisingly, fairly weak. Physicists used to simply rule out solutions with CTCs as unreasonable by fiat, due to the threat of paradoxes, which we have dismantled above. But it is also challenging to make an observational case. Observations tell us very little about global features, such as the existence of CTCs, because signals can only reach an observer from a limited region of spacetime, called the past light cone. Our past light cone—and indeed the collection of all the past light cones for possible observers in a given spacetime—can be embedded in spacetimes with quite different global features (Malament 1977, Manchak 2009). This undercuts the possibility of using observations to constrain global topology, including (among other things) ruling out the existence of CTCs.

Yet the case in favor of taking cosmological models with CTCs seriously is also not particularly strong. Some solutions used to describe black holes, which are clearly relevant in a variety of astrophysical contexts, include CTCs. But the question of whether the CTCs themselves play an essential representational role is subtle: the CTCs arise in the maximal extensions of these solutions, and can plausibly be regarded as extraneous to successful applications. Furthermore, many of the known solutions with CTCs have symmetries, raising the possibility that CTCs are not a stable or robust feature. Slight departures from symmetry may lead to a solution without CTCs, suggesting that the CTCs may be an artifact of an idealized model.

The second sense of possibility regards whether “reasonable” initial conditions can be shown to lead to, or not to lead to, the formation of CTCs. As with the toy models above, suppose that we have a partial Cauchy surface \(S\), such that all the temporal funny business lies to the future. Rather than simply assuming that there is a region with CTCs to the future, we can ask instead whether it is possible to create CTCs by manipulating matter in the initial, well-behaved region—that is, whether it is possible to build a time machine. Several physicists have pursued “chronology protection theorems” aiming to show that the dynamics of general relativity (or some other aspects of physics) rules this out, and to clarify why this is the case. The proof of such a theorem would justify neglecting solutions with CTCs as a source of insight into the nature of time in the actual world. But as of yet there are several partial results that do not fully settle the question. One further intriguing possibility is that even if general relativity by itself does protect chronology, it may not be possible to formulate a sensible theory describing matter and fields in solutions with CTCs. (See SEP entry on Time Machines; Smeenk and Wüthrich 2011 for more.)

There is a different question regarding the limitations of these toy models. The toy models and related examples show that there are consistent solutions for simple systems in the presence of CTCs. As usual we have made the analysis tractable by building toy models, selecting only a few dynamical degrees of freedom and tracking their evolution. But there is a large gap between the systems we have described and the time travel stories they evoke, with Kurt traveling along a CTC with murderous intentions. In particular, many features of the manifest image of time are tied to the thermodynamical properties of macroscopic systems. Rovelli (unpublished) considers a extremely simple system to illustrate the problem: can a clock move along a CTC? A clock consists of something in periodic motion, such as a pendulum bob, and something that counts the oscillations, such as an escapement mechanism. The escapement mechanism cannot work without friction; this requires dissipation and increasing entropy. For a clock that counts oscillations as it moves along a time-like trajectory, the entropy must be a monotonically increasing function. But that is obviously incompatible with the clock returning to precisely the same state at some future time as it completes a loop. The point generalizes, obviously, to imply that anything like a human, with memory and agency, cannot move along a CTC.

Since it is not obvious that one can rid oneself of all constraints in realistic models, let us examine the argument that time travel is implausible, and we should think it unlikely to exist in our world, in so far as it implies such constraints. The argument goes something like the following. In order to satisfy such constraints one needs some pre-established divine harmony between the global (time travel) structure of space-time and the distribution of particles and fields on space-like surfaces in it. But it is not plausible that the actual world, or any world even remotely like ours, is constructed with divine harmony as part of the plan. In fact, one might argue, we have empirical evidence that conditions in any spatial region can vary quite arbitrarily. So we have evidence that such constraints, whatever they are, do not in fact exist in our world. So we have evidence that there are no closed time-like lines in our world or one remotely like it. We will now examine this argument in more detail by presenting four possible responses, with counterresponses, to this argument.

Response 1. There is nothing implausible or new about such constraints. For instance, if the universe is spatially closed, there has to be enough matter to produce the needed curvature, and this puts constraints on the matter distribution on a space-like hypersurface. Thus global space-time structure can quite unproblematically constrain matter distributions on space-like hypersurfaces in it. Moreover we have no realistic idea what these constraints look like, so we hardly can be said to have evidence that they do not obtain.

Counterresponse 1. Of course there are constraining relations between the global structure of space-time and the matter in it. The Einstein equations relate curvature of the manifold to the matter distribution in it. But what is so strange and implausible about the constraints imposed by the existence of closed time-like curves is that these constraints in essence have nothing to do with the Einstein equations. When investigating such constraints one typically treats the particles and/or field in question as test particles and/or fields in a given space-time, i.e., they are assumed not to affect the metric of space-time in any way. In typical space-times without closed time-like curves this means that one has, in essence, complete freedom of matter distribution on a space-like hypersurface. (See response 2 for some more discussion of this issue). The constraints imposed by the possibility of time travel have a quite different origin and are implausible. In the ordinary case there is a causal interaction between matter and space-time that results in relations between global structure of space-time and the matter distribution in it. In the time travel case there is no such causal story to be told: there simply has to be some pre-established harmony between the global space-time structure and the matter distribution on some space-like surfaces. This is implausible.

Response 2. Constraints upon matter distributions are nothing new. For instance, Maxwell’s equations constrain electric fields \(\boldsymbol{E}\) on an initial surface to be related to the (simultaneous) charge density distribution \(\varrho\) by the equation \(\varrho = \text{div}(\boldsymbol{E})\). (If we assume that the \(E\) field is generated solely by the charge distribution, this conditions amounts to requiring that the \(E\) field at any point in space simply be the one generated by the charge distribution according to Coulomb’s inverse square law of electrostatics.) This is not implausible divine harmony. Such constraints can hold as a matter of physical law. Moreover, if we had inferred from the apparent free variation of conditions on spatial regions that there could be no such constraints we would have mistakenly inferred that \(\varrho = \text{div}(\boldsymbol{E})\) could not be a law of nature.

Counterresponse 2. The constraints imposed by the existence of closed time-like lines are of quite a different character from the constraint imposed by \(\varrho = \text{div}(\boldsymbol{E})\). The constraints imposed by \(\varrho = \text{div}(\boldsymbol{E})\) on the state on a space-like hypersurface are:

  • local constraints (i.e., to check whether the constraint holds in a region you just need to see whether it holds at each point in the region),
  • quite independent of the global space-time structure,
  • quite independent of how the space-like surface in question is embedded in a given space-time, and
  • very simply and generally stateable.

On the other hand, the consistency constraints imposed by the existence of closed time-like curves (i) are not local, (ii) are dependent on the global structure of space-time, (iii) depend on the location of the space-like surface in question in a given space-time, and (iv) appear not to be simply stateable other than as the demand that the state on that space-like surface embedded in such and such a way in a given space-time, do not lead to inconsistency. On some views of laws (e.g., David Lewis’ view) this plausibly implies that such constraints, even if they hold, could not possibly be laws. But even if one does not accept such a view of laws, one could claim that the bizarre features of such constraints imply that it is implausible that such constraints hold in our world or in any world remotely like ours.

Response 3. It would be strange if there are constraints in the non-time travel region. It is not strange if there are constraints in the time travel region. They should be explained in terms of the strange, self-interactive, character of time travel regions. In this region there are time-like trajectories from points to themselves. Thus the state at such a point, in such a region, will, in a sense, interact with itself. It is a well-known fact that systems that interact with themselves will develop into an equilibrium state, if there is such an equilibrium state, or else will develop towards some singularity. Normally, of course, self-interaction isn’t true instantaneous self-interaction, but consists of a feed-back mechanism that takes time. But in time travel regions something like true instantaneous self-interaction occurs. This explains why constraints on states occur in such time travel regions: the states “ ab initio ” have to be “equilibrium states”. Indeed in a way this also provides some picture of why indeterminism occurs in time travel regions: at the onset of self-interaction states can fork into different equi-possible equilibrium states.

Counterresponse 3. This is explanation by woolly analogy. It all goes to show that time travel leads to such bizarre consequences that it is unlikely that it occurs in a world remotely like ours.

Response 4. All of the previous discussion completely misses the point. So far we have been taking the space-time structure as given, and asked the question whether a given time travel space-time structure imposes constraints on states on (parts of) space-like surfaces. However, space-time and matter interact. Suppose that one is in a space-time with closed time-like lines, such that certain counterfactual distributions of matter on some neighborhood of a point \(p\) are ruled out if one holds that space-time structure fixed. One might then ask

Why does the actual state near \(p\) in fact satisfy these constraints? By what divine luck or plan is this local state compatible with the global space-time structure? What if conditions near \(p\) had been slightly different?

And one might take it that the lack of normal answers to these questions indicates that it is very implausible that our world, or any remotely like it, is such a time travel universe. However the proper response to these question is the following. There are no constraints in any significant sense. If they hold they hold as a matter of accidental fact, not of law. There is no more explanation of them possible than there is of any contingent fact. Had conditions in a neighborhood of \(p\) been otherwise, the global structure of space-time would have been different. So what? The only question relevant to the issue of constraints is whether an arbitrary state on an arbitrary spatial surface \(S\) can always be embedded into a space-time such that that state on \(S\) consistently extends to a solution on the entire space-time.

But we know the answer to that question. A well-known theorem in general relativity says the following: any initial data set on a three dimensional manifold \(S\) with positive definite metric has a unique embedding into a maximal space-time in which \(S\) is a Cauchy surface (see, e.g., Geroch & Horowitz 1979: 284 for more detail), i.e., there is a unique largest space-time which has \(S\) as a Cauchy surface and contains a consistent evolution of the initial value data on \(S\). Now since \(S\) is a Cauchy surface this space-time does not have closed time like curves. But it may have extensions (in which \(S\) is not a Cauchy surface) which include closed timelike curves, indeed it may be that any maximal extension of it would include closed timelike curves. (This appears to be the case for extensions of states on certain surfaces of Taub-NUT space-times. See Earman, Smeenk, & Wüthrich 2009). But these extensions, of course, will be consistent. So properly speaking, there are no constraints on states on space-like surfaces. Nonetheless the space-time in which these are embedded may or may not include closed time-like curves.

Counterresponse 4. This, in essence, is the stonewalling answer which we indicated in section 1. However, whether or not you call the constraints imposed by a given space-time on distributions of matter on certain space-like surfaces “genuine constraints”, whether or not they can be considered lawlike, and whether or not they need to be explained, the existence of such constraints can still be used to argue that time travel worlds are so bizarre that it is implausible that our world or any world remotely like ours is a time travel world.

Suppose that one is in a time travel world. Suppose that given the global space-time structure of this world, there are constraints imposed upon, say, the state of motion of a ball on some space-like surface when it is treated as a test particle, i.e., when it is assumed that the ball does not affect the metric properties of the space-time it is in. (There is lots of other matter that, via the Einstein equation, corresponds exactly to the curvature that there is everywhere in this time travel worlds.) Now a real ball of course does have some effect on the metric of the space-time it is in. But let us consider a ball that is so small that its effect on the metric is negligible. Presumably it will still be the case that certain states of this ball on that space-like surface are not compatible with the global time travel structure of this universe.

This means that the actual distribution of matter on such a space-like surface can be extended into a space-time with closed time-like lines, but that certain counterfactual distributions of matter on this space-like surface can not be extended into the same space-time. But note that the changes made in the matter distribution (when going from the actual to the counterfactual distribution) do not in any non-negligible way affect the metric properties of the space-time. (Recall that the changes only effect test particles.) Thus the reason why the global time travel properties of the counterfactual space-time have to be significantly different from the actual space-time is not that there are problems with metric singularities or alterations in the metric that force significant global changes when we go to the counterfactual matter distribution. The reason that the counterfactual space-time has to be different is that in the counterfactual world the ball’s initial state of motion starting on the space-like surface, could not “meet up” in a consistent way with its earlier self (could not be consistently extended) if we were to let the global structure of the counterfactual space-time be the same as that of the actual space-time. Now, it is not bizarre or implausible that there is a counterfactual dependence of manifold structure, even of its topology, on matter distributions on spacelike surfaces. For instance, certain matter distributions may lead to singularities, others may not. We may indeed in some sense have causal power over the topology of the space-time we live in. But this power normally comes via the Einstein equations. But it is bizarre to think that there could be a counterfactual dependence of global space-time structure on the arrangement of certain tiny bits of matter on some space-like surface, where changes in that arrangement by assumption do not affect the metric anywhere in space-time in any significant way . It is implausible that we live in such a world, or that a world even remotely like ours is like that.

Let us illustrate this argument in a different way by assuming that wormhole time travel imposes constraints upon the states of people prior to such time travel, where the people have so little mass/energy that they have negligible effect, via the Einstein equation, on the local metric properties of space-time. Do you think it more plausible that we live in a world where wormhole time travel occurs but it only occurs when people’s states are such that these local states happen to combine with time travel in such a way that nobody ever succeeds in killing their younger self, or do you think it more plausible that we are not in a wormhole time travel world? [ 5 ]

An alternative approach to time travel (initiated by Deutsch 1991) abstracts away from the idealized toy models described above. [ 6 ] This computational approach considers instead the evolution of bits (simple physical systems with two discrete states) through a network of interactions, which can be represented by a circuit diagram with gates corresponding to the interactions. Motivated by the possibility of CTCs, Deutsch proposed adding a new kind of channel that connects the output of a given gate back to its input —in essence, a backwards-time step. More concretely, given a gate that takes \(n\) bits as input, we can imagine taking some number \(i \lt n\) of these bits through a channel that loops back and then do double-duty as inputs. Consistency requires that the state of these \(i\) bits is the same for output and input. (We will consider an illustration of this kind of system in the next section.) Working through examples of circuit diagrams with a CTC channel leads to similar treatments of Consistency and Underdetermination as the discussion above (see, e.g., Wallace 2012: § 10.6). But the approach offers two new insights (both originally due to Deutsch): the Easy Knowledge paradox, and a particularly clear extension to time travel in quantum mechanics.

A computer equipped with a CTC channel can exploit the need to find consistent evolution to solve remarkably hard problems. (This is quite different than the first idea that comes to mind to enhance computational power: namely to just devote more time to a computation, and then send the result back on the CTC to an earlier state.) The gate in a circuit incorporating a CTC implements a function from the input bits to the output bits, under the constraint that the output and input match the i bits going through the CTC channel. This requires, in effect, finding the fixed point of the relevant function. Given the generality of the model, there are few limits on the functions that could be implemented on the CTC circuit. Nature has to solve a hard computational problem just to ensure consistent evolution. This can then be extended to other complex computational problems—leading, more precisely, to solutions of NP -complete problems in polynomial time (see Aaronson 2013: Chapter 20 for an overview and further references). The limits imposed by computational complexity are an essential part of our epistemic situation, and computers with CTCs would radically change this.

We now turn to the application of the computational approach to the quantum physics of time travel (see Deutsch 1991; Deutsch & Lockwood 1994). By contrast with the earlier discussions of constraints in classical systems, they claim to show that time travel never imposes any constraints on the pre-time travel state of quantum systems. The essence of this account is as follows. [ 7 ]

A quantum system starts in state \(S_1\), interacts with its older self, after the interaction is in state \(S_2\), time travels while developing into state \(S_3\), then interacts with its younger self, and ends in state \(S_4\) (see figure 10 ).

Figure 10 [An extended description of figure 10 is in the supplement.]

Deutsch assumes that the set of possible states of this system are the mixed states, i.e., are represented by the density matrices over the Hilbert space of that system. Deutsch then shows that for any initial state \(S_1\), any unitary interaction between the older and younger self, and any unitary development during time travel, there is a consistent solution, i.e., there is at least one pair of states \(S_2\) and \(S_3\) such that when \(S_1\) interacts with \(S_3\) it will change to state \(S_2\) and \(S_2\) will then develop into \(S_3\). The states \(S_2, S_3\) and \(S_4\) will typically be not be pure states, i.e., will be non-trivial mixed states, even if \(S_1\) is pure. In order to understand how this leads to interpretational problems let us give an example. Consider a system that has a two dimensional Hilbert space with as a basis the states \(\vc{+}\) and \(\vc{-}\). Let us suppose that when state \(\vc{+}\) of the young system encounters state \(\vc{+}\) of the older system, they interact and the young system develops into state \(\vc{-}\) and the old system remains in state \(\vc{+}\). In obvious notation:

Similarly, suppose that:

Let us furthermore assume that there is no development of the state of the system during time travel, i.e., that \(\vc{+}_2\) develops into \(\vc{+}_3\), and that \(\vc{-}_2\) develops into \(\vc{-}_3\).

Now, if the only possible states of the system were \(\vc{+}\) and \(\vc{-}\) (i.e., if there were no superpositions or mixtures of these states), then there is a constraint on initial states: initial state \(\vc{+}_1\) is impossible. For if \(\vc{+}_1\) interacts with \(\vc{+}_3\) then it will develop into \(\vc{-}_2\), which, during time travel, will develop into \(\vc{-}_3\), which inconsistent with the assumed state \(\vc{+}_3\). Similarly if \(\vc{+}_1\) interacts with \(\vc{-}_3\) it will develop into \(\vc{+}_2\), which will then develop into \(\vc{+}_3\) which is also inconsistent. Thus the system can not start in state \(\vc{+}_1\).

But, says Deutsch, in quantum mechanics such a system can also be in any mixture of the states \(\vc{+}\) and \(\vc{-}\). Suppose that the older system, prior to the interaction, is in a state \(S_3\) which is an equal mixture of 50% \(\vc{+}_3\) and 50% \(\vc{-}_3\). Then the younger system during the interaction will develop into a mixture of 50% \(\vc{+}_2\) and 50% \(\vc{-}_2\), which will then develop into a mixture of 50% \(\vc{+}_3\) and 50% \(\vc{-}_3\), which is consistent! More generally Deutsch uses a fixed point theorem to show that no matter what the unitary development during interaction is, and no matter what the unitary development during time travel is, for any state \(S_1\) there is always a state \(S_3\) (which typically is not a pure state) which causes \(S_1\) to develop into a state \(S_2\) which develops into that state \(S_3\). Thus quantum mechanics comes to the rescue: it shows in all generality that no constraints on initial states are needed!

One might wonder why Deutsch appeals to mixed states: will superpositions of states \(\vc{+}\) and \(\vc{-}\) not suffice? Unfortunately such an idea does not work. Suppose again that the initial state is \(\vc{+}_1\). One might suggest that that if state \(S_3\) is

one will obtain a consistent development. For one might think that when initial state \(\vc{+}_1\) encounters the superposition

it will develop into superposition

and that this in turn will develop into

as desired. However this is not correct. For initial state \(\vc{+}_1\) when it encounters

will develop into the entangled state

In so far as one can speak of the state of the young system after this interaction, it is in the mixture of 50% \(\vc{+}_2\) and 50% \(\vc{-}_2\), not in the superposition

So Deutsch does need his recourse to mixed states.

This clarification of why Deutsch needs his mixtures does however indicate a serious worry about the simplifications that are part of Deutsch’s account. After the interaction the old and young system will (typically) be in an entangled state. Although for purposes of a measurement on one of the two systems one can say that this system is in a mixed state, one can not represent the full state of the two systems by specifying the mixed state of each separate part, as there are correlations between observables of the two systems that are not represented by these two mixed states, but are represented in the joint entangled state. But if there really is an entangled state of the old and young systems directly after the interaction, how is one to represent the subsequent development of this entangled state? Will the state of the younger system remain entangled with the state of the older system as the younger system time travels and the older system moves on into the future? On what space-like surfaces are we to imagine this total entangled state to be? At this point it becomes clear that there is no obvious and simple way to extend elementary non-relativistic quantum mechanics to space-times with closed time-like curves: we apparently need to characterize not just the entanglement between two systems, but entanglement relative to specific spacetime descriptions.

How does Deutsch avoid these complications? Deutsch assumes a mixed state \(S_3\) of the older system prior to the interaction with the younger system. He lets it interact with an arbitrary pure state \(S_1\) younger system. After this interaction there is an entangled state \(S'\) of the two systems. Deutsch computes the mixed state \(S_2\) of the younger system which is implied by this entangled state \(S'\). His demand for consistency then is just that this mixed state \(S_2\) develops into the mixed state \(S_3\). Now it is not at all clear that this is a legitimate way to simplify the problem of time travel in quantum mechanics. But even if we grant him this simplification there is a problem: how are we to understand these mixtures?

If we take an ignorance interpretation of mixtures we run into trouble. For suppose that we assume that in each individual case each older system is either in state \(\vc{+}_3\) or in state \(\vc{-}_3\) prior to the interaction. Then we regain our paradox. Deutsch instead recommends the following, many worlds, picture of mixtures. Suppose we start with state \(\vc{+}_1\) in all worlds. In some of the many worlds the older system will be in the \(\vc{+}_3\) state, let us call them A -worlds, and in some worlds, B -worlds, it will be in the \(\vc{-}_3\) state. Thus in A -worlds after interaction we will have state \(\vc{-}_2\) , and in B -worlds we will have state \(\vc{+}_2\). During time travel the \(\vc{-}_2\) state will remain the same, i.e., turn into state \(\vc{-}_3\), but the systems in question will travel from A -worlds to B -worlds. Similarly the \(\vc{+}\) \(_2\) states will travel from the B -worlds to the A -worlds, thus preserving consistency.

Now whatever one thinks of the merits of many worlds interpretations, and of this understanding of it applied to mixtures, in the end one does not obtain genuine time travel in Deutsch’s account. The systems in question travel from one time in one world to another time in another world, but no system travels to an earlier time in the same world. (This is so at least in the normal sense of the word “world”, the sense that one means when, for instance, one says “there was, and will be, only one Elvis Presley in this world.”) Thus, even if it were a reasonable view, it is not quite as interesting as it may have initially seemed. (See Wallace 2012 for a more sympathetic treatment, that explores several further implications of accepting time travel in conjunction with the many worlds interpretation.)

We close by acknowledging that Deutsch’s starting point—the claim that this computational model captures the essential features of quantum systems in a spacetime with CTCs—has been the subject of some debate. Several physicists have pursued a quite different treatment of evolution of quantum systems through CTC’s, based on considering the “post-selected” state (see Lloyd et al. 2011). Their motivations for implementing the consistency condition in terms of the post-selected state reflects a different stance towards quantum foundations. A different line of argument aims to determine whether Deutsch’s treatment holds as an appropriate limiting case of a more rigorous treatment, such as quantum field theory in curved spacetimes. For example, Verch (2020) establishes several results challenging the assumption that Deutsch’s treatment is tied to the presence of CTC’s, or that it is compatible with the entanglement structure of quantum fields.

What remains of the grandfather paradox in general relativistic time travel worlds is the fact that in some cases the states on edgeless spacelike surfaces are “overconstrained”, so that one has less than the usual freedom in specifying conditions on such a surface, given the time-travel structure, and in some cases such states are “underconstrained”, so that states on edgeless space-like surfaces do not determine what happens elsewhere in the way that they usually do, given the time travel structure. There can also be mixtures of those two types of cases. The extent to which states are overconstrained and/or underconstrained in realistic models is as yet unclear, though it would be very surprising if neither obtained. The extant literature has primarily focused on the problem of overconstraint, since that, often, either is regarded as a metaphysical obstacle to the possibility time travel, or as an epistemological obstacle to the plausibility of time travel in our world. While it is true that our world would be quite different from the way we normally think it is if states were overconstrained, underconstraint seems at least as bizarre as overconstraint. Nonetheless, neither directly rules out the possibility of time travel.

If time travel entailed contradictions then the issue would be settled. And indeed, most of the stories employing time travel in popular culture are logically incoherent: one cannot “change” the past to be different from what it was, since the past (like the present and the future) only occurs once. But if the only requirement demanded is logical coherence, then it seems all too easy. A clever author can devise a coherent time-travel scenario in which everything happens just once and in a consistent way. This is just too cheap: logical coherence is a very weak condition, and many things we take to be metaphysically impossible are logically coherent. For example, it involves no logical contradiction to suppose that water is not molecular, but if both chemistry and Kripke are right it is a metaphysical impossibility. We have been interested not in logical possibility but in physical possibility. But even so, our conditions have been relatively weak: we have asked only whether time-travel is consistent with the universal validity of certain fundamental physical laws and with the notion that the physical state on a surface prior to the time travel region be unconstrained. It is perfectly possible that the physical laws obey this condition, but still that time travel is not metaphysically possible because of the nature of time itself. Consider an analogy. Aristotle believed that water is homoiomerous and infinitely divisible: any bit of water could be subdivided, in principle, into smaller bits of water. Aristotle’s view contains no logical contradiction. It was certainly consistent with Aristotle’s conception of water that it be homoiomerous, so this was, for him, a conceptual possibility. But if chemistry is right, Aristotle was wrong both about what water is like and what is possible for it. It can’t be infinitely divided, even though no logical or conceptual analysis would reveal that.

Similarly, even if all of our consistency conditions can be met, it does not follow that time travel is physically possible, only that some specific physical considerations cannot rule it out. The only serious proof of the possibility of time travel would be a demonstration of its actuality. For if we agree that there is no actual time travel in our universe, the supposition that there might have been involves postulating a substantial difference from actuality, a difference unlike in kind from anything we could know if firsthand. It is unclear to us exactly what the content of possible would be if one were to either maintain or deny the possibility of time travel in these circumstances, unless one merely meant that the possibility is not ruled out by some delineated set of constraints. As the example of Aristotle’s theory of water shows, conceptual and logical “possibility” do not entail possibility in a full-blooded sense. What exactly such a full-blooded sense would be in case of time travel, and whether one could have reason to believe it to obtain, remain to us obscure.

  • Aaronson, Scott, 2013, Quantum Computing since Democritus , Cambridge: Cambridge University Press. doi:10.1017/CBO9780511979309
  • Arntzenius, Frank, 2006, “Time Travel: Double Your Fun”, Philosophy Compass , 1(6): 599–616. doi:10.1111/j.1747-9991.2006.00045.x
  • Clarke, C.J.S., 1977, “Time in General Relativity” in Foundations of Space-Time Theory , Minnesota Studies in the Philosophy of Science , Vol VIII, Earman, J., Glymour, C., and Stachel, J. (eds), pp. 94–108. Minneapolis: University of Minnesota Press.
  • Deutsch, David, 1991, “Quantum Mechanics near Closed Timelike Lines”, Physical Review D , 44(10): 3197–3217. doi:10.1103/PhysRevD.44.3197
  • Deutsch, David and Michael Lockwood, 1994, “The Quantum Physics of Time Travel”, Scientific American , 270(3): 68–74. doi:10.1038/scientificamerican0394-68
  • Dowe, Phil, 2007, “Constraints on Data in Worlds with Closed Timelike Curves”, Philosophy of Science , 74(5): 724–735. doi:10.1086/525617
  • Earman, John, 1972, “Implications of Causal Propagation Outside the Null Cone”, Australasian Journal of Philosophy , 50(3): 222–237. doi:10.1080/00048407212341281
  • Earman, John, 1995, Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes , New York: Oxford University Press.
  • Earman, John, Christopher Smeenk, and Christian Wüthrich, 2009, “Do the Laws of Physics Forbid the Operation of Time Machines?”, Synthese , 169(1): 91–124. doi:10.1007/s11229-008-9338-2
  • Echeverria, Fernando, Gunnar Klinkhammer, and Kip S. Thorne, 1991, “Billiard Balls in Wormhole Spacetimes with Closed Timelike Curves: Classical Theory”, Physical Review D , 44(4): 1077–1099. doi:10.1103/PhysRevD.44.1077
  • Effingham, Nikk, 2020, Time Travel: Probability and Impossibility , Oxford: Oxford University Press. doi:10.1093/oso/9780198842507.001.0001
  • Fletcher, Samuel C., 2020, “The Principle of Stability”, Philosopher’s Imprint , 20: article 3. [ Fletcher 2020 available online ]
  • Friedman, John and Michael Morris, 1991, “The Cauchy Problem for the Scalar Wave Equation Is Well Defined on a Class of Spacetimes with Closed Timelike Curves”, Physical Review Letters , 66(4): 401–404. doi:10.1103/PhysRevLett.66.401
  • Friedman, John, Michael S. Morris, Igor D. Novikov, Fernando Echeverria, Gunnar Klinkhammer, Kip S. Thorne, and Ulvi Yurtsever, 1990, “Cauchy Problem in Spacetimes with Closed Timelike Curves”, Physical Review D , 42(6): 1915–1930. doi:10.1103/PhysRevD.42.1915
  • Geroch, Robert and Gary Horowitz, 1979, “Global Structures of Spacetimes”, in General Relativity: An Einstein Centenary Survey , Stephen Hawking and W. Israel (eds.), Cambridge/New York: Cambridge University Press, Chapter 5, pp. 212–293.
  • Gödel, Kurt, 1949, “A Remark About the Relationship Between Relativity Theory and Idealistic Philosophy”, in Albert Einstein, Philosopher-Scientist , Paul Arthur Schilpp (ed.), Evanston, IL: Library of Living Philosophers, 557–562.
  • Hocking, John G. and Gail S. Young, 1961, Topology , (Addison-Wesley Series in Mathematics), Reading, MA: Addison-Wesley.
  • Horwich, Paul, 1987, “Time Travel”, in his Asymmetries in Time: Problems in the Philosophy of Science , , Cambridge, MA: MIT Press, 111–128.
  • Kutach, Douglas N., 2003, “Time Travel and Consistency Constraints”, Philosophy of Science , 70(5): 1098–1113. doi:10.1086/377392
  • Lewis, David, 1976, “The Paradoxes of Time Travel”, American Philosophical Quarterly , 13(2): 145–152.
  • Lloyd, Seth, Lorenzo Maccone, Raul Garcia-Patron, Vittorio Giovannetti, and Yutaka Shikano, 2011, “Quantum Mechanics of Time Travel through Post-Selected Teleportation”, Physical Review D , 84(2): 025007. doi:10.1103/PhysRevD.84.025007
  • Malament, David B., 1977, “Observationally Indistinguishable Spacetimes: Comments on Glymour’s Paper”, in Foundations of Space-Time Theories , John Earman, Clark N. Glymour, and John J. Stachel (eds.), (Minnesota Studies in the Philosophy of Science 8), Minneapolis, MN: University of Minnesota Press, 61–80.
  • –––, 1984, “‘Time Travel’ in the Gödel Universe”, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association , 1984(2): 91–100. doi:10.1086/psaprocbienmeetp.1984.2.192497
  • –––, 1985, “Minimal Acceleration Requirements for ‘Time Travel’, in Gödel Space‐time”, Journal of Mathematical Physics , 26(4): 774–777. doi:10.1063/1.526566
  • Manchak, John Byron, 2009, “Can We Know the Global Structure of Spacetime?”, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics , 40(1): 53–56. doi:10.1016/j.shpsb.2008.07.004
  • –––, 2011, “On Efficient ‘Time Travel’ in Gödel Spacetime”, General Relativity and Gravitation , 43(1): 51–60. doi:10.1007/s10714-010-1068-3
  • Maudlin, Tim, 1990, “Time-Travel and Topology”, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association , 1990(1): 303–315. doi:10.1086/psaprocbienmeetp.1990.1.192712
  • Novikov, I. D., 1992, “Time Machine and Self-Consistent Evolution in Problems with Self-Interaction”, Physical Review D , 45(6): 1989–1994. doi:10.1103/PhysRevD.45.1989
  • Smeenk, Chris and Christian Wüthrich, 2011, “Time Travel and Time Machines”, in the Oxford Handbook on Time , Craig Callender (ed.), Oxford: Oxford University Press, 577–630..
  • Stein, Howard, 1970, “On the Paradoxical Time-Structures of Gödel”, Philosophy of Science , 37(4): 589–601. doi:10.1086/288328
  • Thorne, Kip S., 1994, Black Holes and Time Warps: Einstein’s Outrageous Legacy , (Commonwealth Fund Book Program), New York: W.W. Norton.
  • Verch, Rainer, 2020, “The D-CTC Condition in Quantum Field Theory”, in Progress and Visions in Quantum Theory in View of Gravity , Felix Finster, Domenico Giulini, Johannes Kleiner, and Jürgen Tolksdorf (eds.), Cham: Springer International Publishing, 221–232. doi:10.1007/978-3-030-38941-3_9
  • Wallace, David, 2012, The Emergent Multiverse: Quantum Theory According to the Everett Interpretation , Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780199546961.001.0001
  • Wasserman, Ryan, 2018, Paradoxes of Time Travel , Oxford: Oxford University Press. doi:10.1093/oso/9780198793335.001.0001
  • Weyl, Hermann, 1918/1920 [1922/1952], Raum, Zeit, Materie , Berlin: Springer; fourth edition 1920. Translated as Space—Time—Matter , Henry Leopold Brose (trans.), New York: Dutton, 1922. Reprinted 1952, New York: Dover Publications.
  • Wheeler, John Archibald and Richard Phillips Feynman, 1949, “Classical Electrodynamics in Terms of Direct Interparticle Action”, Reviews of Modern Physics , 21(3): 425–433. doi:10.1103/RevModPhys.21.425
  • Yurtsever, Ulvi, 1990, “Test Fields on Compact Space‐times”, Journal of Mathematical Physics , 31(12): 3064–3078. doi:10.1063/1.528960
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Adlam, Emily, unpublished, “ Is There Causation in Fundamental Physics? New Insights from Process Matrices and Quantum Causal Modelling ”, 2022, arXiv: 2208.02721. doi:10.48550/ARXIV.2208.02721
  • Rovelli, Carlo, unpublished, “ Can We Travel to the Past? Irreversible Physics along Closed Timelike Curves ”, arXiv: 1912.04702. doi:10.48550/ARXIV.1912.04702

causation: backward | determinism: causal | quantum mechanics | quantum mechanics: retrocausality | space and time: being and becoming in modern physics | time machines | time travel

Copyright © 2023 by Christopher Smeenk < csmeenk2 @ uwo . ca > Frank Arntzenius Tim Maudlin

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2023 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

To revisit this article, visit My Profile, then View saved stories .

  • Backchannel
  • Newsletters
  • WIRED Insider
  • WIRED Consulting

Oliver Franklin-Wallis

A brief history of time travel

Subscribe to WIRED

Of all time travel's paradoxes, here's the strangest of them all: hop on a TARDIS back to 1894 and the concept didn't even exist. "Time travel is a new idea," explains New York-based author James Gleick, 62. "It's a very modern myth." Gleick's entertaining Time Travel: A History , out in hardback in February, quantum leaps from HG Wells's The Time Machine - the original - via Proust and alt-history right up to your Twitter timeline. Until we get the DeLorean working for real, fellow travellers, consider it the next best thing.

The Mahabharata

Time travel appears in Hindu text The Mahabharata, and in stories such as Washington Irving's Rip Van Winkle (1819) - but it usually only involved a one-way trip. "People fell asleep, and woke 
up in the future," says Gleick.

HG Wells's The Time Machine

"The idea of time travel with volition, in either direction, didn't arrive until Wells," says Gleick. It explains that time is a dimension - something not widely accepted until Einstein's theories in 1905.

Henri Bergson's Time And Free Will

Bergson's thesis is published soon after Wells's novel. "Bergson is a friend of Marcel Proust," says Gleick. Soon Proust et al are jumping on the idea of time travel to explore free will - and influencing new sci-fi in return.

Time Capsules

The idea of preserving a time stamp only arose in the 1930s in Scientific American. "It's the most pedestrian form of time travel: sending something into the future at a rate of one minute per minute."

Robert A Heinlein's By His Bootstraps

Heinlein's short story, published in Astounding Science Fiction, introduces the idea of a character appearing in multiple timelines, meeting themselves amid complex - and funny - paradoxes.

William Gibson's The Peripheral

Gleick cites Gibson's unique twist on the genre: "We can't send people, but what if you could send information back to the past?" It's a chilling new take. "It shows how our cultural conception of time is changing."

This article was originally published by WIRED UK

Elon Musk’s Neuralink Had a Brain Implant Setback. It May Come Down to Design

Emily Mullin

How Not to Get Brain-Eating Worms and Mercury Poisoning

Angela Watercutter

Apple’s iPhone Spyware Problem Is Getting Worse. Here’s What You Should Know

Kate O'Flaherty

The Uncomfortable Truth About the UK’s Climate Policies

Matt Reynolds

US Infrastructure Is Broken. Here’s an $830 Million Plan to Fix It

Jessica Rawnsley

It Takes Guts, Not College, to Fix Wind Turbines for a Living

Caitlin Kelly

No, Dubai’s Floods Weren’t Caused by Cloud Seeding

Amit Katwala

Toronto Wants to Manage Storms and Floods&-With a Rain Tax

Abdul Matin Sarfraz

Bird Flu Is Spreading in Alarming New Ways

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Books & Arts
  • Published: 04 October 2016

Conversation

A brief history of time travel

  • Dave Goldberg  1  

Nature Physics volume  12 ,  page 892 ( 2016 ) Cite this article

2972 Accesses

1 Citations

8 Altmetric

Metrics details

  • Science in culture

Time Travel: A History

  • James Gleick

In his brisk and entertaining new book, Time Travel: A History , James Gleick serves as an enthusiastic guide through the fourth dimension as seen in literature and popular culture. I spoke with Gleick to discuss his book, the interface between science and science fiction and what makes genuinely compelling time travel.

Gleick begins his story around the turn of the twentieth century, which saw both H. G. Wells's publication of The Time Machine and, not entirely coincidentally, Albert Einstein's annus mirabilis papers. Wells wasn't a scientist, and nobody — least of all Gleick — would make the argument that The Time Machine presaged special relativity, but he argues that language itself made spacetime almost an inevitable concept; we use the same word for the flow of time and the flow of a river, for example. “Physicists didn't invent that analogy; it was partly built into the language because we don't have words for everything. But the words connecting space and time became more powerful over time.”

The nineteenth century was a golden age of geology and Wells in particular was fascinated by it. There is a very literal sense in which the physical strata of Earth represent movement through time. That, along with the synchronization of clocks required for successful railroads, started many thinkers on the path of considering what time really is. Gleick notes, “Wells's hero, the time traveller, makes a speech explaining why time travel is possible in a way that to modern ears is almost comically pedantic. We can see that his vision of the Universe is almost standard — it's Einstein's version of the Universe”.

who created the time travel theory

But time as a river, or a dimension or any of the familiar analogies is more than simple language at play. We know, and Einstein showed, that space and time really can be rotated into one another with a suitable choice of frame. Wells's innovation was to consider seriously the premise of freely traversing time as we would any other dimension.

Wells is a seminal figure in the development of fictional time travel, but he wasn't the first. Mark Twain's A Connecticut Yankee in King Arthur's Court , for example, predated The Time Machine by six years. But Twain's Connecticut Yankee is more of a tourist than what we now consider a time traveller.

Gleick makes the pitch that the precursors of modern time travel include many ideas that we wouldn't call time travel at all: sleeping into the future, for example, in the tradition of Rip Van Winkle or in prophecies going back to the ancients. In the early decades of the twentieth century, the time capsule fad represented a way of speaking directly to the future — albeit only in one dimension.

Wells's time traveller, however, wasn't simply a passive observer. He could affect the future (and Wells seemed to be uniquely interested in travelling into the future), prompting Gleick to propose a parlour game similar to the 'flight or invisibility?' litmus test for superpowers: “if you had one shot with a time machine, would you go into the future or the past, provided you could go and return safely?”

The future is full of promise, but in the past you could — perhaps — fix your mistakes. Gleick's tour of the development of what are by now are familiar paradoxes brings into focus the giants of early science fiction. One example is Ray Bradbury's A Sound of Thunder , which showed that changes in the past (in the story, the crushing of a butterfly in the Jurassic) can lead inexorably to dramatic changes in the present.

Temporal manipulations can create paradoxes, the most famous of which amounts to the fact that you can't kill your grandfather and prevent your own birth — or can you? From a storytelling perspective, time travel, or at least backwards time travel, seems to preclude the possibility of free will.

In the 1980s, the Russian physicist Igor Novikov put forth what is now known as the 'self-consistency conjecture', which posited, in short, that the probability of inconsistent histories in closed time-like curves was exactly zero. Quantum events should play themselves out the same way the second time around. Gleick notes that “this was why writing the book was so much fun. Watching first the science fiction writers and then the physicists grapple with these questions. What we love about science is the very way it undermines our common sense and it's a great joy whenever it happens.” He cites classic sci-fi movies like The Terminator, 12 Monkeys (itself a remake of La Jetée , a film he lovingly describes in detail in his book) and, in a particularly neat resolution, 'Blink' (an episode of the classic sci-fi series Doctor Who ).

The 'trick' in great time travel literature becomes the way in which the author closes the loop. As Gleick puts it, “the job of a good time travel writer is to explore the paradox by taking it seriously ... but when you go back and think about it, you can see the trick”.

What distinguishes Time Travel: A History from other books more focused on the philosophy or physics of time travel is that Gleick allows himself into the realm of the aesthetic. It is irrelevant whether the physical mechanism for time travel is driven by a steampunk bicycle or a wormhole — you have to believe in the dramatic stakes.

As to the practical possibility of time travel, Gleick is something of a sceptic. Common sense, he argues, suggests that the past really is immutable, no matter how clever the theoretical models that imply otherwise. And despite the apparent symmetry of the microscopic laws of physics, there really is, he argues, something different about the future and the past. “The future hasn't been written yet. When did that become controversial?”

DAVE GOLDBERG  Dave Goldberg is in the Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA.   e-mail: [email protected]

Author information

Authors and affiliations.

Dave Goldberg is in the Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA,

Dave Goldberg 

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Dave Goldberg  .

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Goldberg , D. A brief history of time travel. Nature Phys 12 , 892 (2016). https://doi.org/10.1038/nphys3910

Download citation

Published : 04 October 2016

Issue Date : October 2016

DOI : https://doi.org/10.1038/nphys3910

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

who created the time travel theory

A history of time travel: the how, the why and the when of turning back the clock

Pop on Aqua's 'Turn Back Time' and settle in

who created the time travel theory

For most of human history, the world didn’t change very quickly. Until the 1700s, kids could largely expect their lives to be similar to their parents, and that their children would have an experience very similar to their own, too. There were obviously changes in how humans lived over longer stretches of time, but nothing that even different generations could easily observe.

who created the time travel theory

My first introduction to science fiction was Valérian and Laureline. I was ten years old. Every Wednesday there was a magazine called Pilote in France, and there was two pages of Valerian every week. It was the first time I’d seen a girl and a guy in space, agents travelling in time and space. That was amazing.

The past is written. The present? We have to deal with it. But the future is a white page. So I don’t understand why people on this white page are putting all this darkness.

God! Let’s have some color! Let’s have some fun! Let’s at least imagine a better world. Maybe we won’t be able to do it, but we have to try.

The industrial revolution changed all of this. For the first time in human history, the pace of technological change was visible within a human lifespan. 

It is not a coincidence that it was only after science and technological change became a normal part of the human experience, that time travel became something we dreamed of.

Time travel is actually somewhat unique in science fiction. Many core concepts have their origins earlier in history. 

The historical roots of the concept of a 'robot' can be seen in Jewish folklore for example: Golems were anthropomorphic beings sculpted from clay. In Greek mythology, characters would travel to other worlds, and it's no coincidence that The Matrix features a character called Persephone. But time travel is different.

The first real work to envisage travelling in time was The Time Machine by HG Wells, which was published in 1895. 

The book tells the story of a scientist who builds a machine that will take him to the year 802,701 - a world in which ape-like Morlocks are evolutionary descendants of humanity, and have regressed to a primitive lifestyle. 

Get daily insight, inspiration and deals in your inbox

Get the hottest deals available in your inbox plus news, reviews, opinion, analysis and more from the TechRadar team.

The book was a product of its time - both in terms of the science played upon (Charles Darwin had only published Origin of the Species 35 years earlier), and the racist attitudes: it is speculated that the Morlocks were inspired by the Morlachs, a real ethnic group in the Balkans who were often characterised as “primitive”.

Real science

But of course, this was science fiction - what about science fact? The two have always been closely linked, and during the early days it was no different. In 1907, the physicist Hermann Minkowski first argued that Einstein’s Special Relativity could be expressed in geometric terms as a fourth dimension (to add to our known three) - which is exactly how Wells visualised time travel in his work of fiction.

The development of Special and then General Relativity was significant as it provided the theoretical backbone for how time travel could be conceived in scientific terms. In 1949 Kurt Gödel took Einstein’s work and came up with a solution which as a mathematical necessity included what he called “closed timelike curves” - the idea that if you travel far enough, time will loop back around (like how if you keep flying East, you’ll eventually end up back where you started).

Minkowski's expression of the fourth dimension, no special glasses needed

In other words, using what became known as the Gödel Metric, it is theoretically possible to travel between any one point in time and space and any other. 

There was just one problem: for Gödel’s theory to be right, the universe would have to be spinning - and scientists don’t believe that it is. So while the maths might make sense, Gödel’s universe does not appear to be the one we’re actually living in. Though he never gave up hope that he might be right: Apparently even on this deathbed, he would ask if anyone has found evidence of a spinning universe. And if he does ever turn out to be right, it means that time travel can happen, and is actually fairly straightforward (well, as far as physics goes anyway).

Since Gödel, scientists have continued to hypothesise about time travel, with perhaps the best known example being tachyons - or particles that move faster than the speed of light (therefore, effectively travelling in time). So far, despite one false alarm at CERN in 2011, there is no evidence that they actually exist.

Chancers and hoaxes

Of course, the lack of real science when it comes to time travel has not stopped some people from claiming to have done it. With the likes of Marty McFly and Doctor Who on the brain, chancers and hoaxers have realised that time travel is immediately a compelling prospect. Here’s a couple of amusing examples.

The not-quite-a-Tardis IBM 5100

At the turn of the millennium, when the internet was still in its infancy, forums were captivated by the story of John Titor. Titor claimed he was from the year 2036, and had been sent back in time by the government to obtain an IBM 5100 computer. The thinking appeared to be that by obtaining the computer, the government could find a solution to the UNIX 2038 bug - in which clocks could be reset, Millennium Bug-style, leading to chaos everywhere.

Posting on the 'Time Travel Institute' forums, Titor went into details on how his time machine worked:  It was powered by “two top-spin, dual positive singularities”, and used an X-ray venting system. He also gave a potted history of what humanity could expect: A new American civil war in 2004, and World War III in 2015. He also claimed the “many worlds” interpretation of quantum physics was true, hence why he wasn’t violating the so-called “grandfather paradox”.

Titor claimed he was from the year 2036, and had been sent back in time by the government to obtain an IBM 5100 computer.

Okay, so he probably wasn’t a real time traveller, but in the early days of the internet, when anonymity was more commonplace, he truly captured the imaginations of nerdy early adopters who perhaps, just a little bit, hoped that he might be the real thing.

More recently, in 2013, an Iranian scientist named Ali Razeghi claimed to have invented a time machine of sorts. It was supposedly capable of predicting the next 5-8 years for an individual, with up to 98% accuracy. According to The Telegraph , Razeghi said the invention fits into the size of a standard PC case and “It will not take you into the future, it will bring the future to you”. The idea is that the Iranian government could use it to predict future security threats and military confrontations. So perhaps it is time to check in and see if he managed to predict Donald Trump?

The actual Time Lord, Professor Stephen Hawking

So is this the best we can do? Will we ever manage to crack time travel? Some scientists are still sceptical that it could ever be possible. This includes Stephen Hawking, who proposed the 'Chronology Protection Conjecture' – which is what it sounds like. Essentially, he argues that the laws of physics are as they are to specifically make time travel impossible – on all but “submicroscopic” scales. Essentially, this is to protect how causality works, as if we are suddenly allowed to travel back and kill our grandfathers, it would create massive time paradoxes.

Hawking revealed to Ars Technica in 2012 how he had held a party for time travellers, but only sent out invitations after the date it was held. So did the party support his argument that time travel is impossible? Or did he end up spending the evening in the company of John Titor and Doctor Who?

“I sat there a long time, but no one came”, he said, much to our disappointment.

Huge thanks to Stephen Jorgenson-Murray for walking us through some of the more brain-mangling science for this article.

who created the time travel theory

To celebrate the release of Valerian and the City of a Thousand Planets , Luc Besson is today behind the lens at TechRadar. Here’s what we’ve got in store for you:

  • Luc Besson presents TechRadar
  • From Verne to Valerian: how France became the home of sci-fi
  • Luc Besson talks streaming, viral videos and cinema tech
  • Star spangled glamour: making space travel cooler than ever before
  • A history of time travel: the how, the why and the when
  • 20 best sci-fi films on Netflix and Amazon Prime
  • Amazing future tech from sci-fi films that totally exist now

Valerian and the City of a Thousand Planets is released in UK cinemas August 2nd, and is out now in the US.

I went looking for the inventors building real Star Wars lightsabers and was surprised at what I found

ICYMI: the week's 7 biggest tech stories, from Netflix enraging users to the Rabbit R1 disappointing all of us

Chinese server CPU beats Microsoft, Google and AWS rivals to grab performance crown — Alibaba's Yitian 710 is quickest server CPU but it is based on Arm rather than RISC and x86 is likely to be the overall speed champion

Most Popular

  • 2 The Arc browser just launched and yes, it really is that good
  • 3 NYT Strands today — hints, answers and spangram for Wednesday, May 8 (game #66)
  • 4 Don't fall for the PHEV hype – go battery EV or go home
  • 5 Microsoft might be spooked by Windows 10 user numbers - but will making upgrading to Windows 11 easier be the answer?
  • 2 Apple iPad event 2024 – 9 things we learned from the Let Loose event
  • 3 It's officially time to abandon the Oculus Quest 2, as new VR games and apps are dodging the aging headset
  • 5 The 5 subtle AI announcements Apple made at its big iPad 2024 launch event

who created the time travel theory

Advertisement

Mathematics

The mathematician who worked out how to time travel.

Mathematics suggested that time travel is physically possible – and Kurt Gödel proved it. Mathematician Karl Sigmund explains how the polymath did it

By Karl Sigmund

5 April 2024

who created the time travel theory

Gödel proved that, mathematically speaking, time travel is physically possible

Quality Stock / Alamy

The following is an extract from our Lost in Space-Time newsletter. Each month, we hand over the keyboard to a physicist or mathematician to tell you about fascinating ideas from their corner of the universe. You can sign up for Lost in Space-Time for free  here .

There may be no better way to get truly lost in space-time than to travel to the past and fiddle around with causality. Polymath Kurt Gödel suggested that you could, for instance, land…

Sign up to our weekly newsletter

Receive a weekly dose of discovery in your inbox! We'll also keep you up to date with New Scientist events and special offers.

To continue reading, subscribe today with our introductory offers

No commitment, cancel anytime*

Offer ends 2nd of July 2024.

*Cancel anytime within 14 days of payment to receive a refund on unserved issues.

Inclusive of applicable taxes (VAT)

Existing subscribers

More from New Scientist

Explore the latest news, articles and features

500-year-old maths problem turns out to apply to coffee and clocks

Subscriber-only

Game theory shows we can never learn perfectly from our mistakes

Vindication for maths teachers: pythagoras's theorem seen in the wild, particles move in beautiful patterns when they have ‘spatial memory’, popular articles.

Trending New Scientist articles

Time travel: Is it possible?

Science says time travel is possible, but probably not in the way you're thinking.

time travel graphic illustration of a tunnel with a clock face swirling through the tunnel.

Albert Einstein's theory

  • General relativity and GPS
  • Wormhole travel
  • Alternate theories

Science fiction

Is time travel possible? Short answer: Yes, and you're doing it right now — hurtling into the future at the impressive rate of one second per second. 

You're pretty much always moving through time at the same speed, whether you're watching paint dry or wishing you had more hours to visit with a friend from out of town. 

But this isn't the kind of time travel that's captivated countless science fiction writers, or spurred a genre so extensive that Wikipedia lists over 400 titles in the category "Movies about Time Travel." In franchises like " Doctor Who ," " Star Trek ," and "Back to the Future" characters climb into some wild vehicle to blast into the past or spin into the future. Once the characters have traveled through time, they grapple with what happens if you change the past or present based on information from the future (which is where time travel stories intersect with the idea of parallel universes or alternate timelines). 

Related: The best sci-fi time machines ever

Although many people are fascinated by the idea of changing the past or seeing the future before it's due, no person has ever demonstrated the kind of back-and-forth time travel seen in science fiction or proposed a method of sending a person through significant periods of time that wouldn't destroy them on the way. And, as physicist Stephen Hawking pointed out in his book " Black Holes and Baby Universes" (Bantam, 1994), "The best evidence we have that time travel is not possible, and never will be, is that we have not been invaded by hordes of tourists from the future."

Science does support some amount of time-bending, though. For example, physicist Albert Einstein 's theory of special relativity proposes that time is an illusion that moves relative to an observer. An observer traveling near the speed of light will experience time, with all its aftereffects (boredom, aging, etc.) much more slowly than an observer at rest. That's why astronaut Scott Kelly aged ever so slightly less over the course of a year in orbit than his twin brother who stayed here on Earth. 

Related: Controversially, physicist argues that time is real

There are other scientific theories about time travel, including some weird physics that arise around wormholes , black holes and string theory . For the most part, though, time travel remains the domain of an ever-growing array of science fiction books, movies, television shows, comics, video games and more. 

Scott and Mark Kelly sit side by side wearing a blue NASA jacket and jeans

Einstein developed his theory of special relativity in 1905. Along with his later expansion, the theory of general relativity , it has become one of the foundational tenets of modern physics. Special relativity describes the relationship between space and time for objects moving at constant speeds in a straight line. 

The short version of the theory is deceptively simple. First, all things are measured in relation to something else — that is to say, there is no "absolute" frame of reference. Second, the speed of light is constant. It stays the same no matter what, and no matter where it's measured from. And third, nothing can go faster than the speed of light.

From those simple tenets unfolds actual, real-life time travel. An observer traveling at high velocity will experience time at a slower rate than an observer who isn't speeding through space. 

While we don't accelerate humans to near-light-speed, we do send them swinging around the planet at 17,500 mph (28,160 km/h) aboard the International Space Station . Astronaut Scott Kelly was born after his twin brother, and fellow astronaut, Mark Kelly . Scott Kelly spent 520 days in orbit, while Mark logged 54 days in space. The difference in the speed at which they experienced time over the course of their lifetimes has actually widened the age gap between the two men.

"So, where[as] I used to be just 6 minutes older, now I am 6 minutes and 5 milliseconds older," Mark Kelly said in a panel discussion on July 12, 2020, Space.com previously reported . "Now I've got that over his head."

General relativity and GPS time travel

Graphic showing the path of GPS satellites around Earth at the center of the image.

The difference that low earth orbit makes in an astronaut's life span may be negligible — better suited for jokes among siblings than actual life extension or visiting the distant future — but the dilation in time between people on Earth and GPS satellites flying through space does make a difference. 

Read more: Can we stop time?

The Global Positioning System , or GPS, helps us know exactly where we are by communicating with a network of a few dozen satellites positioned in a high Earth orbit. The satellites circle the planet from 12,500 miles (20,100 kilometers) away, moving at 8,700 mph (14,000 km/h). 

According to special relativity, the faster an object moves relative to another object, the slower that first object experiences time. For GPS satellites with atomic clocks, this effect cuts 7 microseconds, or 7 millionths of a second, off each day, according to the American Physical Society publication Physics Central .  

Read more: Could Star Trek's faster-than-light warp drive actually work?

Then, according to general relativity, clocks closer to the center of a large gravitational mass like Earth tick more slowly than those farther away. So, because the GPS satellites are much farther from the center of Earth compared to clocks on the surface, Physics Central added, that adds another 45 microseconds onto the GPS satellite clocks each day. Combined with the negative 7 microseconds from the special relativity calculation, the net result is an added 38 microseconds. 

This means that in order to maintain the accuracy needed to pinpoint your car or phone — or, since the system is run by the U.S. Department of Defense, a military drone — engineers must account for an extra 38 microseconds in each satellite's day. The atomic clocks onboard don’t tick over to the next day until they have run 38 microseconds longer than comparable clocks on Earth.

Given those numbers, it would take more than seven years for the atomic clock in a GPS satellite to un-sync itself from an Earth clock by more than a blink of an eye. (We did the math: If you estimate a blink to last at least 100,000 microseconds, as the Harvard Database of Useful Biological Numbers does, it would take thousands of days for those 38 microsecond shifts to add up.) 

This kind of time travel may seem as negligible as the Kelly brothers' age gap, but given the hyper-accuracy of modern GPS technology, it actually does matter. If it can communicate with the satellites whizzing overhead, your phone can nail down your location in space and time with incredible accuracy. 

Can wormholes take us back in time?

General relativity might also provide scenarios that could allow travelers to go back in time, according to NASA . But the physical reality of those time-travel methods is no piece of cake. 

Wormholes are theoretical "tunnels" through the fabric of space-time that could connect different moments or locations in reality to others. Also known as Einstein-Rosen bridges or white holes, as opposed to black holes, speculation about wormholes abounds. But despite taking up a lot of space (or space-time) in science fiction, no wormholes of any kind have been identified in real life. 

Related: Best time travel movies

"The whole thing is very hypothetical at this point," Stephen Hsu, a professor of theoretical physics at the University of Oregon, told Space.com sister site Live Science . "No one thinks we're going to find a wormhole anytime soon."

Primordial wormholes are predicted to be just 10^-34 inches (10^-33 centimeters) at the tunnel's "mouth". Previously, they were expected to be too unstable for anything to be able to travel through them. However, a study claims that this is not the case, Live Science reported . 

The theory, which suggests that wormholes could work as viable space-time shortcuts, was described by physicist Pascal Koiran. As part of the study, Koiran used the Eddington-Finkelstein metric, as opposed to the Schwarzschild metric which has been used in the majority of previous analyses.

In the past, the path of a particle could not be traced through a hypothetical wormhole. However, using the Eddington-Finkelstein metric, the physicist was able to achieve just that.

Koiran's paper was described in October 2021, in the preprint database arXiv , before being published in the Journal of Modern Physics D.

Graphic illustration of a wormhole

Alternate time travel theories

While Einstein's theories appear to make time travel difficult, some researchers have proposed other solutions that could allow jumps back and forth in time. These alternate theories share one major flaw: As far as scientists can tell, there's no way a person could survive the kind of gravitational pulling and pushing that each solution requires.

Infinite cylinder theory

Astronomer Frank Tipler proposed a mechanism (sometimes known as a Tipler Cylinder ) where one could take matter that is 10 times the sun's mass, then roll it into a very long, but very dense cylinder. The Anderson Institute , a time travel research organization, described the cylinder as "a black hole that has passed through a spaghetti factory."

After spinning this black hole spaghetti a few billion revolutions per minute, a spaceship nearby — following a very precise spiral around the cylinder — could travel backward in time on a "closed, time-like curve," according to the Anderson Institute. 

The major problem is that in order for the Tipler Cylinder to become reality, the cylinder would need to be infinitely long or be made of some unknown kind of matter. At least for the foreseeable future, endless interstellar pasta is beyond our reach.

Time donuts

Theoretical physicist Amos Ori at the Technion-Israel Institute of Technology in Haifa, Israel, proposed a model for a time machine made out of curved space-time — a donut-shaped vacuum surrounded by a sphere of normal matter.

"The machine is space-time itself," Ori told Live Science . "If we were to create an area with a warp like this in space that would enable time lines to close on themselves, it might enable future generations to return to visit our time."

Amos Ori is a theoretical physicist at the Technion-Israel Institute of Technology in Haifa, Israel. His research interests and publications span the fields of general relativity, black holes, gravitational waves and closed time lines.

There are a few caveats to Ori's time machine. First, visitors to the past wouldn't be able to travel to times earlier than the invention and construction of the time donut. Second, and more importantly, the invention and construction of this machine would depend on our ability to manipulate gravitational fields at will — a feat that may be theoretically possible but is certainly beyond our immediate reach.

Graphic illustration of the TARDIS (Time and Relative Dimensions in Space) traveling through space, surrounded by stars.

Time travel has long occupied a significant place in fiction. Since as early as the "Mahabharata," an ancient Sanskrit epic poem compiled around 400 B.C., humans have dreamed of warping time, Lisa Yaszek, a professor of science fiction studies at the Georgia Institute of Technology in Atlanta, told Live Science .  

Every work of time-travel fiction creates its own version of space-time, glossing over one or more scientific hurdles and paradoxes to achieve its plot requirements. 

Some make a nod to research and physics, like " Interstellar ," a 2014 film directed by Christopher Nolan. In the movie, a character played by Matthew McConaughey spends a few hours on a planet orbiting a supermassive black hole, but because of time dilation, observers on Earth experience those hours as a matter of decades. 

Others take a more whimsical approach, like the "Doctor Who" television series. The series features the Doctor, an extraterrestrial "Time Lord" who travels in a spaceship resembling a blue British police box. "People assume," the Doctor explained in the show, "that time is a strict progression from cause to effect, but actually from a non-linear, non-subjective viewpoint, it's more like a big ball of wibbly-wobbly, timey-wimey stuff." 

Long-standing franchises like the "Star Trek" movies and television series, as well as comic universes like DC and Marvel Comics, revisit the idea of time travel over and over. 

Related: Marvel movies in order: chronological & release order

Here is an incomplete (and deeply subjective) list of some influential or notable works of time travel fiction:

Books about time travel:

A sketch from the Christmas Carol shows a cloaked figure on the left and a person kneeling and clutching their head with their hands.

  • Rip Van Winkle (Cornelius S. Van Winkle, 1819) by Washington Irving
  • A Christmas Carol (Chapman & Hall, 1843) by Charles Dickens
  • The Time Machine (William Heinemann, 1895) by H. G. Wells
  • A Connecticut Yankee in King Arthur's Court (Charles L. Webster and Co., 1889) by Mark Twain
  • The Restaurant at the End of the Universe (Pan Books, 1980) by Douglas Adams
  • A Tale of Time City (Methuen, 1987) by Diana Wynn Jones
  • The Outlander series (Delacorte Press, 1991-present) by Diana Gabaldon
  • Harry Potter and the Prisoner of Azkaban (Bloomsbury/Scholastic, 1999) by J. K. Rowling
  • Thief of Time (Doubleday, 2001) by Terry Pratchett
  • The Time Traveler's Wife (MacAdam/Cage, 2003) by Audrey Niffenegger
  • All You Need is Kill (Shueisha, 2004) by Hiroshi Sakurazaka

Movies about time travel:

  • Planet of the Apes (1968)
  • Superman (1978)
  • Time Bandits (1981)
  • The Terminator (1984)
  • Back to the Future series (1985, 1989, 1990)
  • Star Trek IV: The Voyage Home (1986)
  • Bill & Ted's Excellent Adventure (1989)
  • Groundhog Day (1993)
  • Galaxy Quest (1999)
  • The Butterfly Effect (2004)
  • 13 Going on 30 (2004)
  • The Lake House (2006)
  • Meet the Robinsons (2007)
  • Hot Tub Time Machine (2010)
  • Midnight in Paris (2011)
  • Looper (2012)
  • X-Men: Days of Future Past (2014)
  • Edge of Tomorrow (2014)
  • Interstellar (2014)
  • Doctor Strange (2016)
  • A Wrinkle in Time (2018)
  • The Last Sharknado: It's About Time (2018)
  • Avengers: Endgame (2019)
  • Tenet (2020)
  • Palm Springs (2020)
  • Zach Snyder's Justice League (2021)
  • The Tomorrow War (2021)

Television about time travel:

Image of the Star Trek spaceship USS Enterprise

  • Doctor Who (1963-present)
  • The Twilight Zone (1959-1964) (multiple episodes)
  • Star Trek (multiple series, multiple episodes)
  • Samurai Jack (2001-2004)
  • Lost (2004-2010)
  • Phil of the Future (2004-2006)
  • Steins;Gate (2011)
  • Outlander (2014-2023)
  • Loki (2021-present)

Games about time travel:

  • Chrono Trigger (1995)
  • TimeSplitters (2000-2005)
  • Kingdom Hearts (2002-2019)
  • Prince of Persia: Sands of Time (2003)
  • God of War II (2007)
  • Ratchet and Clank Future: A Crack In Time (2009)
  • Sly Cooper: Thieves in Time (2013)
  • Dishonored 2 (2016)
  • Titanfall 2 (2016)
  • Outer Wilds (2019)

Additional resources

Explore physicist Peter Millington's thoughts about Stephen Hawking's time travel theories at The Conversation . Check out a kid-friendly explanation of real-world time travel from NASA's Space Place . For an overview of time travel in fiction and the collective consciousness, read " Time Travel: A History " (Pantheon, 2016) by James Gleik. 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Ailsa Harvey

Ailsa is a staff writer for How It Works magazine, where she writes science, technology, space, history and environment features. Based in the U.K., she graduated from the University of Stirling with a BA (Hons) journalism degree. Previously, Ailsa has written for Cardiff Times magazine, Psychology Now and numerous science bookazines. 

China's Chang'e 6 mission to collect samples of the far side of the moon enters lunar orbit (video)

China launches Chang'e 6 sample-return mission to moon's far side (video)

SpaceX fires up Starship rocket for upcoming 5th test flight (photos, video)

Most Popular

  • 2 Ruko Veeniix V11 drone review
  • 3 Blinded by the light: How bad are satellite megaconstellations for astronomy?
  • 4 Boeing's Starliner rolled off launch pad to replace 'buzzing' rocket valve (photo)
  • 5 A failed star and an ammonia trail could reveal how some giant exoplanets form

who created the time travel theory

April 26, 2023

Is Time Travel Possible?

The laws of physics allow time travel. So why haven’t people become chronological hoppers?

By Sarah Scoles

3D illustration tunnel background

yuanyuan yan/Getty Images

In the movies, time travelers typically step inside a machine and—poof—disappear. They then reappear instantaneously among cowboys, knights or dinosaurs. What these films show is basically time teleportation .

Scientists don’t think this conception is likely in the real world, but they also don’t relegate time travel to the crackpot realm. In fact, the laws of physics might allow chronological hopping, but the devil is in the details.

Time traveling to the near future is easy: you’re doing it right now at a rate of one second per second, and physicists say that rate can change. According to Einstein’s special theory of relativity, time’s flow depends on how fast you’re moving. The quicker you travel, the slower seconds pass. And according to Einstein’s general theory of relativity , gravity also affects clocks: the more forceful the gravity nearby, the slower time goes.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

“Near massive bodies—near the surface of neutron stars or even at the surface of the Earth, although it’s a tiny effect—time runs slower than it does far away,” says Dave Goldberg, a cosmologist at Drexel University.

If a person were to hang out near the edge of a black hole , where gravity is prodigious, Goldberg says, only a few hours might pass for them while 1,000 years went by for someone on Earth. If the person who was near the black hole returned to this planet, they would have effectively traveled to the future. “That is a real effect,” he says. “That is completely uncontroversial.”

Going backward in time gets thorny, though (thornier than getting ripped to shreds inside a black hole). Scientists have come up with a few ways it might be possible, and they have been aware of time travel paradoxes in general relativity for decades. Fabio Costa, a physicist at the Nordic Institute for Theoretical Physics, notes that an early solution with time travel began with a scenario written in the 1920s. That idea involved massive long cylinder that spun fast in the manner of straw rolled between your palms and that twisted spacetime along with it. The understanding that this object could act as a time machine allowing one to travel to the past only happened in the 1970s, a few decades after scientists had discovered a phenomenon called “closed timelike curves.”

“A closed timelike curve describes the trajectory of a hypothetical observer that, while always traveling forward in time from their own perspective, at some point finds themselves at the same place and time where they started, creating a loop,” Costa says. “This is possible in a region of spacetime that, warped by gravity, loops into itself.”

“Einstein read [about closed timelike curves] and was very disturbed by this idea,” he adds. The phenomenon nevertheless spurred later research.

Science began to take time travel seriously in the 1980s. In 1990, for instance, Russian physicist Igor Novikov and American physicist Kip Thorne collaborated on a research paper about closed time-like curves. “They started to study not only how one could try to build a time machine but also how it would work,” Costa says.

Just as importantly, though, they investigated the problems with time travel. What if, for instance, you tossed a billiard ball into a time machine, and it traveled to the past and then collided with its past self in a way that meant its present self could never enter the time machine? “That looks like a paradox,” Costa says.

Since the 1990s, he says, there’s been on-and-off interest in the topic yet no big breakthrough. The field isn’t very active today, in part because every proposed model of a time machine has problems. “It has some attractive features, possibly some potential, but then when one starts to sort of unravel the details, there ends up being some kind of a roadblock,” says Gaurav Khanna of the University of Rhode Island.

For instance, most time travel models require negative mass —and hence negative energy because, as Albert Einstein revealed when he discovered E = mc 2 , mass and energy are one and the same. In theory, at least, just as an electric charge can be positive or negative, so can mass—though no one’s ever found an example of negative mass. Why does time travel depend on such exotic matter? In many cases, it is needed to hold open a wormhole—a tunnel in spacetime predicted by general relativity that connects one point in the cosmos to another.

Without negative mass, gravity would cause this tunnel to collapse. “You can think of it as counteracting the positive mass or energy that wants to traverse the wormhole,” Goldberg says.

Khanna and Goldberg concur that it’s unlikely matter with negative mass even exists, although Khanna notes that some quantum phenomena show promise, for instance, for negative energy on very small scales. But that would be “nowhere close to the scale that would be needed” for a realistic time machine, he says.

These challenges explain why Khanna initially discouraged Caroline Mallary, then his graduate student at the University of Massachusetts Dartmouth, from doing a time travel project. Mallary and Khanna went forward anyway and came up with a theoretical time machine that didn’t require negative mass. In its simplistic form, Mallary’s idea involves two parallel cars, each made of regular matter. If you leave one parked and zoom the other with extreme acceleration, a closed timelike curve will form between them.

Easy, right? But while Mallary’s model gets rid of the need for negative matter, it adds another hurdle: it requires infinite density inside the cars for them to affect spacetime in a way that would be useful for time travel. Infinite density can be found inside a black hole, where gravity is so intense that it squishes matter into a mind-bogglingly small space called a singularity. In the model, each of the cars needs to contain such a singularity. “One of the reasons that there's not a lot of active research on this sort of thing is because of these constraints,” Mallary says.

Other researchers have created models of time travel that involve a wormhole, or a tunnel in spacetime from one point in the cosmos to another. “It's sort of a shortcut through the universe,” Goldberg says. Imagine accelerating one end of the wormhole to near the speed of light and then sending it back to where it came from. “Those two sides are no longer synced,” he says. “One is in the past; one is in the future.” Walk between them, and you’re time traveling.

You could accomplish something similar by moving one end of the wormhole near a big gravitational field—such as a black hole—while keeping the other end near a smaller gravitational force. In that way, time would slow down on the big gravity side, essentially allowing a particle or some other chunk of mass to reside in the past relative to the other side of the wormhole.

Making a wormhole requires pesky negative mass and energy, however. A wormhole created from normal mass would collapse because of gravity. “Most designs tend to have some similar sorts of issues,” Goldberg says. They’re theoretically possible, but there’s currently no feasible way to make them, kind of like a good-tasting pizza with no calories.

And maybe the problem is not just that we don’t know how to make time travel machines but also that it’s not possible to do so except on microscopic scales—a belief held by the late physicist Stephen Hawking. He proposed the chronology protection conjecture: The universe doesn’t allow time travel because it doesn’t allow alterations to the past. “It seems there is a chronology protection agency, which prevents the appearance of closed timelike curves and so makes the universe safe for historians,” Hawking wrote in a 1992 paper in Physical Review D .

Part of his reasoning involved the paradoxes time travel would create such as the aforementioned situation with a billiard ball and its more famous counterpart, the grandfather paradox : If you go back in time and kill your grandfather before he has children, you can’t be born, and therefore you can’t time travel, and therefore you couldn’t have killed your grandfather. And yet there you are.

Those complications are what interests Massachusetts Institute of Technology philosopher Agustin Rayo, however, because the paradoxes don’t just call causality and chronology into question. They also make free will seem suspect. If physics says you can go back in time, then why can’t you kill your grandfather? “What stops you?” he says. Are you not free?

Rayo suspects that time travel is consistent with free will, though. “What’s past is past,” he says. “So if, in fact, my grandfather survived long enough to have children, traveling back in time isn’t going to change that. Why will I fail if I try? I don’t know because I don’t have enough information about the past. What I do know is that I’ll fail somehow.”

If you went to kill your grandfather, in other words, you’d perhaps slip on a banana en route or miss the bus. “It's not like you would find some special force compelling you not to do it,” Costa says. “You would fail to do it for perfectly mundane reasons.”

In 2020 Costa worked with Germain Tobar, then his undergraduate student at the University of Queensland in Australia, on the math that would underlie a similar idea: that time travel is possible without paradoxes and with freedom of choice.

Goldberg agrees with them in a way. “I definitely fall into the category of [thinking that] if there is time travel, it will be constructed in such a way that it produces one self-consistent view of history,” he says. “Because that seems to be the way that all the rest of our physical laws are constructed.”

No one knows what the future of time travel to the past will hold. And so far, no time travelers have come to tell us about it.

Time Travel Probably Isn't Possible—Why Do We Wish It Were?

Time travel exerts an irresistible pull on our scientific and storytelling imagination.

Since H.G. Wells imagined that time was a fourth dimension —and Einstein confirmed it—the idea of time travel has captivated us. More than 50 scientific papers are published on time travel each year, and storytellers continually explore it—from Stephen King’s JFK assassination novel 11/22/63 to the steamy Outlander television series to Woody Allen’s comedy Midnight in Paris . What if we could travel back in time, we wonder, and change history? Assassinate Hitler or marry that high school sweetheart who dumped us? What if we could see what the future has in store?

These are some of the ideas that bestselling author James Gleick explores in his thought-provoking new book, Time Travel: A History. Speaking from his home in New York City, he recalls how Stephen Hawking once sent out invitations to a party that had already taken place ; why the Chinese government has branded time travel as “incorrect” and “frivolous” ; and how the idea of time travel is, ultimately, about our desire to defeat death.

Let’s cut right to the chase: What is time?

Oh, no, you didn’t! [ Laughs. ] In A.D. 400, St. Augustine said—and many people have said the same thing since, either quoting him consciously or unconsciously—“What, then, is time? If no one asks me, I know. If I wish to explain it to one that asks, I know not.” I think that is actually not a quip, but quite profound.

The best way to understand time is to recognize that we actually are very sophisticated about it. Over the past century-plus, we’ve learned a great deal. The physicist John Archibald Wheeler said, “Time is nature’s way to keep everything from happening all at once.” If you look it up in a dictionary, you get stuff like, “The general term for the experience of duration.” But that’s just completely punting because what is duration ?

I try to steer away from aphorisms and dictionary definitions, just to say two things. First, that we have a lot of contradictory ways of talking about time. We think of time as something we waste, spend, or save, as if it’s a quantity. We also think of time as a medium we are passing through every day, a river carrying us along. All of these notions are aspects of a complicated subject that has no bumper sticker answer.

When does the idea of time travel first appear in the West? And how did it impact popular culture?

I assumed, as a person who always read sci-fi a lot when I was a kid, that time travel is an obvious idea we’re born knowing and fantasizing about. And that it must always have been part of human culture, that there must be time travel Greek myths and Chinese legends. But there aren’t! Time travel turns out to be a very new idea that essentially starts with H.G. Wells’s 1895 novel, The Time Machine . Before that nobody thought of putting the words time and travel together. The closest you can come before that is people falling asleep, like Rip Van Winkle, or fantasies like Charles Dickens’s A Christmas Carol .

For Hungry Minds

The beginning of my book is an attempt to answer the question, “Why? Why not before? Why suddenly at the end of the 19 th century was it possible— necessary— for people to dream up this crazy fantasy?” Even though it’s H.G. Wells who does it, people pick up his ball very quickly and run with it. You find it in American science fiction that started appearing in pulp magazines in the 1920s and 1930s, or in the great new modernist literature of Marcel Proust’s In Search of Lost Time , James Joyce, and Virginia Woolf.

All these writers were suddenly making time their explicit subject, twisting time in new ways, inventing new narrative techniques to deal with time, to explore the vagaries of memory or the way our consciousness changes over time.

In 1991, Stephen Hawking wrote a paper called “Chronology Protection Conjecture , ” in which he asked: If time travel is possible, why are we not inundated with tourists from the future? He has a point, doesn’t he?

Yes! He even scheduled a party and sent out an invitation inviting time travelers to come to a party that had taken place in the past. Then he observed that none of them had shown up. [Laughs.] Hawking is one of these physicists who love playing with the idea of time travel. It’s irresistible because it’s so much fun! When he talks about the paradoxes of time travel it’s because he’s reading the same science fiction stories as the rest of us.

The paradoxes started appearing in magazines aimed mostly at young people in the 1920s. Somebody wrote in and said, “Time travel is a weird idea, because what if you go back in time and you kill your grandfather? Then your grandfather never meets your grandmother and you’re never born.” It’s an impossible loop.

Hawking, like other physicists, decided, “Time is my business. What if we take this seriously? Can we express this in physical terms?” I don’t think he succeeded but what he proposed was that the reason these paradoxes can’t happen is because the universe takes care of itself. It can’t happen because it didn’t happen. That’s the simple way of saying what the chronology protection conjecture is.

How have the Internet and other new technologies changed our perception and experience of time?

We are just beginning to see what the Internet is doing to our perception of time. We are living more and more in this networked world in which everything travels at light speed. We are multitasking and experiencing new forms of simultaneity, so the Internet appears to us as a kind of hall of mirrors. It feels as though we’re embedded in an ever expanding present.

Our sense of the past changes because in some ways the past becomes more vivid than ever. We’re looking at the past on our video screens and it’s just as vivid if the movie is about something that happened 20 years ago, as if it is a live stream. We can’t always tell the difference. On the other hand, the past that’s more distant—and isn’t available in video form—starts to seem more remote and fuzzier. Maybe we are forgetting how to visualize the past from reading histories. We’re entering a new period of time confusion, in which we suddenly find ourselves in what looks like an unending present.

In 2011, the Chinese government issued an extraordinary denunciation of the idea of time travel. What was their beef?

They thought it was corrupting and decadent. It’s a reminder that time travel is neither a simple nor innocent idea. It’s very powerful. It enables us to imagine alternative universes, and this is another line that science fiction writers have explored. What if someone was able to go back in time and kill Hitler?

Time travel is also a powerful way of allowing us to imagine what the future might bring. A lot of futurists nowadays tend to be dystopian. Time travel gives us ways of exploring how the worst tendencies of our current societies could grow even worse. That’s what George Orwell did in 1984 . I imagine the Chinese government doesn’t particularly want the equivalent of 1984 to be published in Beijing. [ Laughs. ]

You May Also Like

who created the time travel theory

What's a leap second—and why is it going away for good?

who created the time travel theory

This 2,200-year-old slab bears the world’s first mention of leap year

who created the time travel theory

There’s a better way to wake up. Here’s what experts advise.

More than 50 scientific papers a year are now published on the idea of time travel. why are scientists drawn to the subject.

Scientists live in the same science fictional universe as all the rest of us. Time travel is a sexy and romantic idea that appeals to the physicist as much as it appeals to every teenager. I don’t think scientists are ever going to solve the problem of time travel for us but they still love to talk about wormholes and dark matter.

There’s a fascinating coincidence in the early history that when H.G. Wells needed to set the stage for his time machine hurtling into the future, he decided not to just jump right into his story but set the scene with a framing device—his time traveler lecturing a group of friends on the science of time—in order to justify the possibility of a time machine. His lecture introduces the idea that time is nothing more than a fourth dimension, that traveling through time is analogous to traveling through space. Since we have machines that can take us into any of the three special dimensions, including balloons and elevators, why shouldn’t we have a machine able to travel through the fourth dimension?

A decade later, Einstein burst onto the scene with his theory of relativity in which time is a fourth dimension , just like space. Soon after that, Hermann Minkowski pronounced that, henceforth, we were not going to talk about space and time as separate quantities but as a union of the two, spacetime , a four-dimensional continuum in which the future already exists and the past still exists.

I’m not claiming that Einstein read H.G. Wells 10 years before. But there was something in the air that both scientists and imaginative writers were empowered to visualize time in a new way. Today, that’s the way we visualize it. We’re comfortable talking about time as a fourth dimension.

You quote Ursula K. Le Guin , who writes, “Story is our only boat for sailing on the river of time.” Talk about storytelling and its relationship to time.

One of the things that has happened, along with our heightened awareness of time and its possibilities, is that people who invent narratives have learned very clever new techniques. Literal time travel is only one of them. You don’t actually need to send your hero into the future or into the past to write a story that plays with time in clever new ways. Narrative is also how everybody, not just writers, constructs a vision of our own relationship with time. We imagine the future. We remember the past. When we do that, we’re making up stories.

Psychologists are learning something that great storytellers have known for some time, which is that memory is not like computer retrieval. It’s an active process. Every time we remember something we are remembering it a little bit differently. We’re retelling the story to ourselves.

If time travel is impossible, why do we continue to be so fascinated with the idea?

One of the reasons is we want to go back and undo our mistakes. When you ask yourself, “If I had a time machine, what would I do?” sometimes the answer is, “I would go back to this particular day and do that thing over.” I think one of the great time travel movies is Groundhog Day , the Bill Murray movie where he wakes up every morning and has to live the same day over and over again. He gradually realizes that perhaps fate is telling him he needs to do it over, right. Regret is the time traveler’s energy bar. But that’s not the only motivation for time travel. We also have curiosity about the future and interest in our parents and our children. A lot of time travel fiction is a way of asking questions about what our parents were like, or what our children will be like.

At some point during the four years I worked on this book, I also realized that, in one way or another, every time travel story is about death. Death is either explicitly there in the foreground or lurking in the background because time is a bastard, right? Time is brutal. What does time do to us? It kills us. Time travel is our way of flirting with immortality. It’s the closest we’re going to come to it.

This interview was edited for length and clarity.

Simon Worrall curates Book Talk . Follow him on Twitter or at simonworrallauthor.com .

Related Topics

who created the time travel theory

Why daylight saving time exists—at least for now

who created the time travel theory

Leap year saved our societies from chaos—for now, at least

who created the time travel theory

Does eating close to bedtime make you gain weight? It depends.

who created the time travel theory

Why we sing ‘Auld Lang Syne’ on New Year’s Eve

who created the time travel theory

Do you have a morning routine? Here's how some historic figures started their day

  • Environment

History & Culture

  • History & Culture
  • History Magazine
  • Gory Details
  • Mind, Body, Wonder
  • Paid Content
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

  • Skip to main content
  • Keyboard shortcuts for audio player

Short Wave

  • LISTEN & FOLLOW
  • Apple Podcasts
  • Google Podcasts
  • Amazon Music
  • Amazon Alexa

Your support helps make our show possible and unlocks access to our sponsor-free feed.

Paradox-Free Time Travel Is Theoretically Possible, Researchers Say

Matthew S. Schwartz 2018 square

Matthew S. Schwartz

who created the time travel theory

A dog dressed as Marty McFly from Back to the Future attends the Tompkins Square Halloween Dog Parade in 2015. New research says time travel might be possible without the problems McFly encountered. Timothy A. Clary/AFP via Getty Images hide caption

A dog dressed as Marty McFly from Back to the Future attends the Tompkins Square Halloween Dog Parade in 2015. New research says time travel might be possible without the problems McFly encountered.

"The past is obdurate," Stephen King wrote in his book about a man who goes back in time to prevent the Kennedy assassination. "It doesn't want to be changed."

Turns out, King might have been on to something.

Countless science fiction tales have explored the paradox of what would happen if you went back in time and did something in the past that endangered the future. Perhaps one of the most famous pop culture examples is in Back to the Future , when Marty McFly goes back in time and accidentally stops his parents from meeting, putting his own existence in jeopardy.

But maybe McFly wasn't in much danger after all. According a new paper from researchers at the University of Queensland, even if time travel were possible, the paradox couldn't actually exist.

Researchers ran the numbers and determined that even if you made a change in the past, the timeline would essentially self-correct, ensuring that whatever happened to send you back in time would still happen.

"Say you traveled in time in an attempt to stop COVID-19's patient zero from being exposed to the virus," University of Queensland scientist Fabio Costa told the university's news service .

"However, if you stopped that individual from becoming infected, that would eliminate the motivation for you to go back and stop the pandemic in the first place," said Costa, who co-authored the paper with honors undergraduate student Germain Tobar.

"This is a paradox — an inconsistency that often leads people to think that time travel cannot occur in our universe."

A variation is known as the "grandfather paradox" — in which a time traveler kills their own grandfather, in the process preventing the time traveler's birth.

The logical paradox has given researchers a headache, in part because according to Einstein's theory of general relativity, "closed timelike curves" are possible, theoretically allowing an observer to travel back in time and interact with their past self — potentially endangering their own existence.

But these researchers say that such a paradox wouldn't necessarily exist, because events would adjust themselves.

Take the coronavirus patient zero example. "You might try and stop patient zero from becoming infected, but in doing so, you would catch the virus and become patient zero, or someone else would," Tobar told the university's news service.

In other words, a time traveler could make changes, but the original outcome would still find a way to happen — maybe not the same way it happened in the first timeline but close enough so that the time traveler would still exist and would still be motivated to go back in time.

"No matter what you did, the salient events would just recalibrate around you," Tobar said.

The paper, "Reversible dynamics with closed time-like curves and freedom of choice," was published last week in the peer-reviewed journal Classical and Quantum Gravity . The findings seem consistent with another time travel study published this summer in the peer-reviewed journal Physical Review Letters. That study found that changes made in the past won't drastically alter the future.

Bestselling science fiction author Blake Crouch, who has written extensively about time travel, said the new study seems to support what certain time travel tropes have posited all along.

"The universe is deterministic and attempts to alter Past Event X are destined to be the forces which bring Past Event X into being," Crouch told NPR via email. "So the future can affect the past. Or maybe time is just an illusion. But I guess it's cool that the math checks out."

  • time travel
  • grandfather paradox

a row of planet earths

Time travel could be possible, but only with parallel timelines

who created the time travel theory

Assistant Professor, Physics, Brock University

Disclosure statement

Barak Shoshany does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Brock University provides funding as a member of The Conversation CA-FR.

Brock University provides funding as a member of The Conversation CA.

View all partners

Have you ever made a mistake that you wish you could undo? Correcting past mistakes is one of the reasons we find the concept of time travel so fascinating. As often portrayed in science fiction, with a time machine, nothing is permanent anymore — you can always go back and change it. But is time travel really possible in our universe , or is it just science fiction?

Read more: Curious Kids: is time travel possible for humans?

Our modern understanding of time and causality comes from general relativity . Theoretical physicist Albert Einstein’s theory combines space and time into a single entity — “spacetime” — and provides a remarkably intricate explanation of how they both work, at a level unmatched by any other established theory. This theory has existed for more than 100 years, and has been experimentally verified to extremely high precision, so physicists are fairly certain it provides an accurate description of the causal structure of our universe.

For decades, physicists have been trying to use general relativity to figure out if time travel is possible . It turns out that you can write down equations that describe time travel and are fully compatible and consistent with relativity. But physics is not mathematics, and equations are meaningless if they do not correspond to anything in reality.

Arguments against time travel

There are two main issues which make us think these equations may be unrealistic. The first issue is a practical one: building a time machine seems to require exotic matter , which is matter with negative energy. All the matter we see in our daily lives has positive energy — matter with negative energy is not something you can just find lying around. From quantum mechanics, we know that such matter can theoretically be created, but in too small quantities and for too short times .

However, there is no proof that it is impossible to create exotic matter in sufficient quantities. Furthermore, other equations may be discovered that allow time travel without requiring exotic matter. Therefore, this issue may just be a limitation of our current technology or understanding of quantum mechanics.

an illustration of a person standing in a barren landscape underneath a clock

The other main issue is less practical, but more significant: it is the observation that time travel seems to contradict logic, in the form of time travel paradoxes . There are several types of such paradoxes, but the most problematic are consistency paradoxes .

A popular trope in science fiction, consistency paradoxes happen whenever there is a certain event that leads to changing the past, but the change itself prevents this event from happening in the first place.

For example, consider a scenario where I enter my time machine, use it to go back in time five minutes, and destroy the machine as soon as I get to the past. Now that I destroyed the time machine, it would be impossible for me to use it five minutes later.

But if I cannot use the time machine, then I cannot go back in time and destroy it. Therefore, it is not destroyed, so I can go back in time and destroy it. In other words, the time machine is destroyed if and only if it is not destroyed. Since it cannot be both destroyed and not destroyed simultaneously, this scenario is inconsistent and paradoxical.

Eliminating the paradoxes

There’s a common misconception in science fiction that paradoxes can be “created.” Time travellers are usually warned not to make significant changes to the past and to avoid meeting their past selves for this exact reason. Examples of this may be found in many time travel movies, such as the Back to the Future trilogy.

But in physics, a paradox is not an event that can actually happen — it is a purely theoretical concept that points towards an inconsistency in the theory itself. In other words, consistency paradoxes don’t merely imply time travel is a dangerous endeavour, they imply it simply cannot be possible.

This was one of the motivations for theoretical physicist Stephen Hawking to formulate his chronology protection conjecture , which states that time travel should be impossible. However, this conjecture so far remains unproven. Furthermore, the universe would be a much more interesting place if instead of eliminating time travel due to paradoxes, we could just eliminate the paradoxes themselves.

One attempt at resolving time travel paradoxes is theoretical physicist Igor Dmitriyevich Novikov’s self-consistency conjecture , which essentially states that you can travel to the past, but you cannot change it.

According to Novikov, if I tried to destroy my time machine five minutes in the past, I would find that it is impossible to do so. The laws of physics would somehow conspire to preserve consistency.

Introducing multiple histories

But what’s the point of going back in time if you cannot change the past? My recent work, together with my students Jacob Hauser and Jared Wogan, shows that there are time travel paradoxes that Novikov’s conjecture cannot resolve. This takes us back to square one, since if even just one paradox cannot be eliminated, time travel remains logically impossible.

So, is this the final nail in the coffin of time travel? Not quite. We showed that allowing for multiple histories (or in more familiar terms, parallel timelines) can resolve the paradoxes that Novikov’s conjecture cannot. In fact, it can resolve any paradox you throw at it.

The idea is very simple. When I exit the time machine, I exit into a different timeline. In that timeline, I can do whatever I want, including destroying the time machine, without changing anything in the original timeline I came from. Since I cannot destroy the time machine in the original timeline, which is the one I actually used to travel back in time, there is no paradox.

After working on time travel paradoxes for the last three years , I have become increasingly convinced that time travel could be possible, but only if our universe can allow multiple histories to coexist. So, can it?

Quantum mechanics certainly seems to imply so, at least if you subscribe to Everett’s “many-worlds” interpretation , where one history can “split” into multiple histories, one for each possible measurement outcome – for example, whether Schrödinger’s cat is alive or dead, or whether or not I arrived in the past.

But these are just speculations. My students and I are currently working on finding a concrete theory of time travel with multiple histories that is fully compatible with general relativity. Of course, even if we manage to find such a theory, this would not be sufficient to prove that time travel is possible, but it would at least mean that time travel is not ruled out by consistency paradoxes.

Time travel and parallel timelines almost always go hand-in-hand in science fiction, but now we have proof that they must go hand-in-hand in real science as well. General relativity and quantum mechanics tell us that time travel might be possible, but if it is, then multiple histories must also be possible.

  • Time travel
  • Theoretical physics
  • Time machine
  • Albert Einstein
  • Listen to this article
  • Time travel paradox

who created the time travel theory

Events and Communications Coordinator

who created the time travel theory

Assistant Editor - 1 year cadetship

who created the time travel theory

Executive Dean, Faculty of Health

who created the time travel theory

Lecturer/Senior Lecturer, Earth System Science (School of Science)

who created the time travel theory

Sydney Horizon Educators (Identified)

  • Skip to main content
  • Skip to header right navigation
  • Skip to site footer

method logo sxs 280x96 wht

tech news, reviews & how to's

This article may contain affiliate links.

time travel

3 Popular Time Travel Theory Concepts Explained

Time travel theory. It’s one of the most popular themes in fiction. But every plotline falls into one of these three Time Travel Theories.

cropped methodshop icon 1024x1024

Time travel is one of the most popular themes in cinema . Although most time travel movies are in the sci-fi genre, every genre, even comedy, horror, and drama, have tackled complicated storylines involving time travel theory. Chances are, you’ve seen at least a few of the movies listed below:

  • But what about...

The Possibility Of Time Travel

Time travel theory.

  • Bill & Ted’s Excellent Adventure (1989)
  • The Time Machine  (2002)
  • Timeline (2003)
  • Time Cop (2004)
  • Back to the Future  (1985)
  • 12 Monkeys  (1995)
  • Terminator Series (1984)
  • Star Trek (2009)
  • Harry Potter and the Prisoner of Azkaban (2004)
  • Freejack (1992)
  • Looper (2012)

But one thing you might not have realized, even if you’ve seen hundreds of time travel-related films, is that there are only  3 different theories of time travel. That’s it. Every time travel movie or book that you’ve ever enjoyed falls into one of these time travel theories.

Fixed Timeline: Time Travel Theory

Want to change the future on Earth by modifying the past or present? Don’t even bother according to this time travel theory. In a fixed timeline, there’s a single history that is unchangeable. Whatever you are attempting to change by time-traveling is what created the problems in the present that you’re trying to fix ( 12 Monkeys ). Or you’re just wasting your time because the events you are trying to prevent will happen anyway ( Donnie Darko ).

Dynamic Timeline: Time Travel Theory

History is fragile and even the smallest changes can have a huge impact. After traveling back in time, your actions may impact your own timeline. The result is a paradox. Your changes to the past might result in you never being born, like in Back to the Future (1985), or never traveling in time in the first place. In The Time Machine (2002), Hartdegen goes back in time to save his sweetheart Emma but can’t. Doing so would have resulted in his never developing the time machine that he used to try and save her.

One common way to explore this paradox theory is by killing your own grandfather. The grandfather paradox is when a time traveler attempts to kill their grandfather before the grandfather meets their grandmother. This prevents the time travel’s parents from being born and thus the time traveler himself from being born. But if the time traveler was never born, then the traveler would never have traveled back in time, therefore erasing his or her actions involving the death of their grandfather.

Multiverse: Time Travel Theory

Travel all over time and do whatever you want. It doesn’t matter because there are multiple universes and your actions only create new timelines. This is a common theory used by the science fiction TV series, Doctor Who . Using the multiverse theory of time travel, it’s assumed that there are multiple coexisting alternate timelines.

Therefore, when the traveler goes back in time, they end up in a new timeline where historical events can differ from the timeline they came from, but their original timeline does not cease to exist. This means the grandfather paradox can be avoided. Even if the time traveler’s grandparent is killed at a young age in the new timeline, he/she still survived to have children in the original timeline, so there is still a causal explanation for the traveler’s existence.

Time travel may actually create a new timeline that diverges from the original timeline at the moment the time traveler appears in the past, or the traveler may arrive in an already existing parallel universe. There’s just one problem… you can’t go back ( The One , 2002).

But what about…

Some may argue that people who are “trapped” in time are time travelers as well. This happens in countless time travel movies including Robin Williams ‘ character in the 1995 film Jumanji who gets trapped inside a board game. The list of “people who are cryogenically frozen and then successfully thawed out in the future” is even longer and includes Austin Powers: The Spy Who Shagged Me  (1999), Planet of the Apes (1968) and so on.

Although these characters are “moving” through time, they are doing so by pausing and then rejoining the current timeline. The lack of a time machine device disqualifies them from technically being “time travelers” and included in this list of theories on time travel.

So will time travel ever be possible? All we know for sure is that the experts don’t agree. According to the Albert Einstein theory of relativity, time is relative, not constant and the bending of spacetime could be possible. But according to  Stephen Hawking , time travel is not possible. The Stephen Hawking time travel theory suggests that the absence of present-day time travelers from the future is an argument against the existence of time travel — a variant of the Fermi paradox (aka where the hell is everybody?). But it’s fun to think about.

Theories Of Time Travel - Time Travel Theory

NERD NOTE:  What happens to time in a black hole? We don’t know for sure, but according to both Stephen Hawking and Albert Einstein’s theory, time near a black hole slows down. This is because a black hole’s gravitational pull is so strong that even light can’t escape. Since gravity also affects light, time would also slow down.

If you could successfully travel into the future, or back in time, what would you do? Warn people about natural disasters? Buy a winning lottery ticket ? Try to prevent your own death? What do you think about these time travel theory ideas or the time travel movies that we included in this article? Please tell us in the comments below.

Related Articles:

  • Beautiful Nature Time-Lapse Videos That Will Brighten Your Day
  • Productivity Tips to Help You Focus, Save Time, And Stay Motivated
  • Famous People Who Are Members Of The Sleepless Elite
  • Should Scientists Clone The Woolly Mammoth?

J. Frank Wilson

Frank Wilson is a retired teacher with over 30 years of combined experience in the education, small business technology, and real estate business. He now blogs as a hobby and spends most days tinkering with old computers. Wilson is passionate about tech, enjoys fishing, and loves drinking beer.

You'll also enjoy these posts

MOST POPULAR posts

google naked

7 Pictures Of Naked People Captured By Google’s Cameras

dmas top usa

Top 200 Nielsen DMA Rankings (2024) – Full List

lg tv disable home screen scaled

How To Change The Default LG TV Home Screen To Live TV

MORE LIKE THIS

Caddyshack Quotes

35 Famous Caddyshack Quotes That’ll Make You Laugh

godfather feature

The 28 Most Memorable Quotes From The Godfather Trilogy

casablanca quotes

12 Famous Casablanca Quotes That We’ll Never Forget

check out these trending posts

couple kissing

Dating Acronyms: The Ultimate List Of Useful Dating Abbreviations

ierase

How To Erase iPod Tutorial — The Super Fix for Most iPod Problems

smart home

5 Compelling Reasons To Turn Your House Into A Smart Home

usb data blockers

The 6 Best USB Data Blockers To Prevent Hackers From Juice Jacking Your Phone

rooftop woman

10 Naked Sunbathers Busted By Google Earth

paypal shipping

How To Easily Create A PayPal Shipping Label Without Invoice

hatch restore sleep

Is Your Hatch Restore Already Registered? Here’s How To Fix It And Unregister A Hatch Restore.

pulp fiction feature

25 Of The Best Pulp Fiction Quotes From Quentin Tarantino’s 1994 Film

philadelphia love

Reader Interactions

who created the time travel theory

Mar 24, 2015 at 11:24 PM

are there really only 3 theories? i feel like there are more but i cant think of any besides the movies listed here. hummmmmmmmm

Leave a Reply

Your email address will not be published. Required fields are marked *

who created the time travel theory

  • [ November 30, 2022 ] The Night Sky This Month: December 2022 Night Sky
  • [ November 22, 2022 ] James Webb Telescope Turns Its Attention To The Kuiper Belt News & Events
  • [ November 1, 2022 ] The Night Sky This Month: November 2022 Night Sky
  • [ October 4, 2022 ] Are Wormholes Fact or Fiction? General Astronomy
  • [ October 1, 2022 ] The Night Sky This Month: October 2022 Night Sky

5 Bizarre Paradoxes Of Time Travel Explained

December 20, 2014 James Miller Astronomy Lists , Time Travel 58

time, clock, alarm clock

There is nothing in Einstein’s theories of relativity to rule out time travel , although the very notion of traveling to the past violates one of the most fundamental premises of physics, that of causality. With the laws of cause and effect out the window, there naturally arises a number of inconsistencies associated with time travel, and listed here are some of those paradoxes which have given both scientists and time travel movie buffs alike more than a few sleepless nights over the years.

Types of Temporal Paradoxes

The time travel paradoxes that follow fall into two broad categories:

1) Closed Causal Loops , such as the Predestination Paradox and the Bootstrap Paradox, which involve a self-existing time loop in which cause and effect run in a repeating circle, but is also internally consistent with the timeline’s history.

2) Consistency Paradoxes , such as the Grandfather Paradox and other similar variants such as The Hitler paradox, and Polchinski’s Paradox, which generate a number of timeline inconsistencies related to the possibility of altering the past.

1: Predestination Paradox

A Predestination Paradox occurs when the actions of a person traveling back in time become part of past events, and may ultimately cause the event he is trying to prevent to take place. The result is a ‘temporal causality loop’ in which Event 1 in the past influences Event 2 in the future (time travel to the past) which then causes Event 1 to occur.

This circular loop of events ensures that history is not altered by the time traveler, and that any attempts to stop something from happening in the past will simply lead to the cause itself, instead of stopping it. Predestination paradoxes suggest that things are always destined to turn out the same way and that whatever has happened must happen.

Sound complicated? Imagine that your lover dies in a hit-and-run car accident, and you travel back in time to save her from her fate, only to find that on your way to the accident you are the one who accidentally runs her over. Your attempt to change the past has therefore resulted in a predestination paradox. One way of dealing with this type of paradox is to assume that the version of events you have experienced are already built into a self-consistent version of reality, and that by trying to alter the past you will only end up fulfilling your role in creating an event in history, not altering it.

– Cinema Treatment

In The Time Machine (2002) movie, for instance, Dr. Alexander Hartdegen witnesses his fiancee being killed by a mugger, leading him to build a time machine to travel back in time to save her from her fate. His subsequent attempts to save her fail, though, leading him to conclude that “I could come back a thousand times… and see her die a thousand ways.” After then traveling centuries into the future to see if a solution has been found to the temporal problem, Hartdegen is told by the Über-Morlock:

“You built your time machine because of Emma’s death. If she had lived, it would never have existed, so how could you use your machine to go back and save her? You are the inescapable result of your tragedy, just as I am the inescapable result of you .”

  • Movies : Examples of predestination paradoxes in the movies include 12 Monkeys (1995), TimeCrimes (2007), The Time Traveler’s Wife (2009), and Predestination (2014).
  • Books : An example of a predestination paradox in a book is Phoebe Fortune and the Pre-destination Paradox by M.S. Crook.

2: Bootstrap Paradox

A Bootstrap Paradox is a type of paradox in which an object, person, or piece of information sent back in time results in an infinite loop where the object has no discernible origin, and exists without ever being created. It is also known as an Ontological Paradox, as ontology is a branch of philosophy concerned with the nature of being or existence.

– Information : George Lucas traveling back in time and giving himself the scripts for the Star War movies which he then goes on to direct and gain great fame for would create a bootstrap paradox involving information, as the scripts have no true point of creation or origin.

– Person : A bootstrap paradox involving a person could be, say, a 20-year-old male time traveler who goes back 21 years, meets a woman, has an affair, and returns home three months later without knowing the woman was pregnant. Her child grows up to be the 20-year-old time traveler, who travels back 21 years through time, meets a woman, and so on. American science fiction writer Robert Heinlein wrote a strange short story involving a sexual paradox in his 1959 classic “All You Zombies.”

These ontological paradoxes imply that the future, present, and past are not defined, thus giving scientists an obvious problem on how to then pinpoint the “origin” of anything, a word customarily referring to the past, but now rendered meaningless. Further questions arise as to how the object/data was created, and by whom. Nevertheless, Einstein’s field equations allow for the possibility of closed time loops, with Kip Thorne the first theoretical physicist to recognize traversable wormholes and backward time travel as being theoretically possible under certain conditions.

  • Movies : Examples of bootstrap paradoxes in the movies include Somewhere in Time (1980), Bill and Ted’s Excellent Adventure (1989), the Terminator movies, and Time Lapse (2014). The Netflix series Dark (2017-19) also features a book called ‘A Journey Through Time’ which presents another classic example of a bootstrap paradox.
  • Books : Examples of bootstrap paradoxes in books include Michael Moorcock’s ‘Behold The Man’, Tim Powers’ The Anubis Gates, and Heinlein’s “By His Bootstraps”

3: Grandfather Paradox

The Grandfather Paradox concerns ‘self-inconsistent solutions’ to a timeline’s history caused by traveling back in time. For example, if you traveled to the past and killed your grandfather, you would never have been born and would not have been able to travel to the past – a paradox.

Let’s say you did decide to kill your grandfather because he created a dynasty that ruined the world. You figure if you knock him off before he meets your grandmother then the whole family line (including you) will vanish and the world will be a better place. According to theoretical physicists, the situation could play out as follows:

– Timeline protection hypothesis: You pop back in time, walk up to him, and point a revolver at his head. You pull the trigger but the gun fails to fire. Click! Click! Click! The bullets in the chamber have dents in the firing caps. You point the gun elsewhere and pull the trigger. Bang! Point it at your grandfather.. Click! Click! Click! So you try another method to kill him, but that only leads to scars that in later life he attributed to the world’s worst mugger. You can do many things as long as they’re not fatal until you are chased off by a policeman.

– Multiple universes hypothesis: You pop back in time, walk up to him, and point a revolver at his head. You pull the trigger and Boom! The deed is done. You return to the “present,” but you never existed here. Everything about you has been erased, including your family, friends, home, possessions, bank account, and history. You’ve entered a timeline where you never existed. Scientists entertain the possibility that you have now created an alternate timeline or entered a parallel universe.

  • Movies : Example of the Grandfather Paradox in movies include Back to the Future (1985), Back to the Future Part II (1989), and Back to the Future Part III (1990).
  • Books : Example of the Grandfather Paradox in books include Dr. Quantum in the Grandfather Paradox by Fred Alan Wolf , The Grandfather Paradox by Steven Burgauer, and Future Times Three (1944) by René Barjavel, the very first treatment of a grandfather paradox in a novel.

4: Let’s Kill Hitler Paradox

Similar to the Grandfather Paradox which paradoxically prevents your own birth, the Killing Hitler paradox erases your own reason for going back in time to kill him. Furthermore, while killing Grandpa might have a limited “butterfly effect,” killing Hitler would have far-reaching consequences for everyone in the world, even if only for the fact you studied him in school.

The paradox itself arises from the idea that if you were successful, then there would be no reason to time travel in the first place. If you killed Hitler then none of his actions would trickle down through history and cause you to want to make the attempt.

  • Movies/Shows : By far the best treatment for this notion occurred in a Twilight Zone episode called Cradle of Darkness which sums up the difficulties involved in trying to change history, with another being an episode of Dr Who called ‘Let’s Kill Hitler’.
  • Books : Examples of the Let’s Kill Hitler Paradox in books include How to Kill Hitler: A Guide For Time Travelers by Andrew Stanek, and the graphic novel I Killed Adolf Hitler by Jason.

5: Polchinski’s Paradox

American theoretical physicist Joseph Polchinski proposed a time paradox scenario in which a billiard ball enters a wormhole, and emerges out the other end in the past just in time to collide with its younger version and stop it from going into the wormhole in the first place.

Polchinski’s paradox is taken seriously by physicists, as there is nothing in Einstein’s General Relativity to rule out the possibility of time travel, closed time-like curves (CTCs), or tunnels through space-time. Furthermore, it has the advantage of being based upon the laws of motion, without having to refer to the indeterministic concept of free will, and so presents a better research method for scientists to think about the paradox. When Joseph Polchinski proposed the paradox, he had Novikov’s Self-Consistency Principle in mind, which basically states that while time travel is possible, time paradoxes are forbidden.

However, a number of solutions have been formulated to avoid the inconsistencies Polchinski suggested, which essentially involves the billiard ball delivering a blow that changes its younger version’s course, but not enough to stop it from entering the wormhole. This solution is related to the ‘timeline-protection hypothesis’ which states that a probability distortion would occur in order to prevent a paradox from happening. This also helps explain why if you tried to time travel and murder your grandfather, something will always happen to make that impossible, thus preserving a consistent version of history.

  • Books:  Paradoxes of Time Travel by Ryan Wasserman is a wide-ranging exploration of time and time travel, including Polchinski’s Paradox.

Are Self-Fulfilling Prophecies Paradoxes?

A self-fulfilling prophecy is only a causality loop when the prophecy is truly known to happen and events in the future cause effects in the past, otherwise the phenomenon is not so much a paradox as a case of cause and effect.  Say,  for instance, an authority figure states that something is inevitable, proper, and true, convincing everyone through persuasive style. People, completely convinced through rhetoric, begin to behave as if the prediction were already true, and consequently bring it about through their actions. This might be seen best by an example where someone convincingly states:

“High-speed Magnetic Levitation Trains will dominate as the best form of transportation from the 21st Century onward.”

Jet travel, relying on diminishing fuel supplies, will be reserved for ocean crossing, and local flights will be a thing of the past. People now start planning on building networks of high-speed trains that run on electricity. Infrastructure gears up to supply the needed parts and the prediction becomes true not because it was truly inevitable (though it is a smart idea), but because people behaved as if it were true.

It even works on a smaller scale – the scale of individuals. The basic methodology for all those “self-help” books out in the world is that if you modify your thinking that you are successful (money, career, dating, etc.), then with the strengthening of that belief you start to behave like a successful person. People begin to notice and start to treat you like a successful person; it is a reinforcement/feedback loop and you actually become successful by behaving as if you were.

Are Time Paradoxes Inevitable?

The Butterfly Effect is a reference to Chaos Theory where seemingly trivial changes can have huge cascade reactions over long periods of time. Consequently, the Timeline corruption hypothesis states that time paradoxes are an unavoidable consequence of time travel, and even insignificant changes may be enough to alter history completely.

In one story, a paleontologist, with the help of a time travel device, travels back to the Jurassic Period to get photographs of Stegosaurus, Brachiosaurus, Ceratosaurus, and Allosaurus amongst other dinosaurs. He knows he can’t take samples so he just takes magnificent pictures from the fixed platform that is positioned precisely to not change anything about the environment. His assistant is about to pick a long blade of grass, but he stops him and explains how nothing must change because of their presence. They finish what they are doing and return to the present, but everything is gone. They reappear in a wild world with no humans and no signs that they ever existed. They fall to the floor of their platform, the only man-made thing in the whole world, and lament “Why? We didn’t change anything!” And there on the heel of the scientist’s shoe is a crushed butterfly.

The Butterfly Effect is also a movie, starring Ashton Kutcher as Evan Treborn and Amy Smart as Kayleigh Miller, where a troubled man has had blackouts during his youth, later explained by him traveling back into his own past and taking charge of his younger body briefly. The movie explores the issue of changing the timeline and how unintended consequences can propagate.

Scientists eager to avoid the paradoxes presented by time travel have come up with a number of ingenious ways in which to present a more consistent version of reality, some of which have been touched upon here,  including:

  • The Solution: time travel is impossible because of the very paradox it creates.
  • Self-healing hypothesis: successfully altering events in the past will set off another set of events which will cause the present to remain the same.
  • The Multiverse or “many-worlds” hypothesis: an alternate parallel universe or timeline is created each time an event is altered in the past.
  • Erased timeline hypothesis : a person traveling to the past would exist in the new timeline, but have their own timeline erased.

Related Posts

© Copyright 2023 Astronomy Trek

The Sci-Fi Writer Who Invented Conspiracy Theory

It all goes back to one man in the 1950s: a military-intelligence expert in psychological warfare.

collage of Paul Linebarger and his science fiction books

Listen to this article

Produced by ElevenLabs and News Over Audio (NOA) using AI narration.

I n 1950 , a U.S. Army psyops officer named Paul Linebarger used a pseudonym to publish a science-fiction story titled “Scanners Live in Vain” in a pulp magazine. It was about a man named Martel who works for the “deep state” in the far future as a mysterious “scanner,” or starship pilot, and whose mind is manipulated by evil bureaucrats. After a new technology called a “cranching wire” restores his true senses, he recognizes that his bosses within the government order a hit on anyone who challenges their control of space travel and the economy. Martel ultimately joins an insurrectionary movement aimed at overthrowing the regime.

If this narrative sounds like a QAnon conspiracy theory, there’s a good reason for that: Today’s dystopian political rhetoric has its roots in mid-century sci-fi. Martel’s struggle against secretive, malevolent authorities echoes in the Pizzagate shooter’s fantasy about a cabal of politically powerful pedophiles; we can also see its inspiration in Representative Marjorie Taylor Greene’s anti-Semitic Facebook rant about space lasers beamed at the Earth , and the Donald Trump adviser Roger Stone’s intimation that Bill Gates “played some role in the creation” of COVID-19.

Linebarger, who died of a heart attack in 1966 at age 53, could not have predicted that tropes from his sci-fi stories about mind control and techno-authoritarianism would shape 21st-century American political rhetoric. But the persistence of his ideas is far from accidental, because Linebarger wasn’t just a writer and soldier. He was an anti-communist intelligence operative who helped define U.S. psychological operations, or psyops, during World War II and the Cold War. His essential insight was that the most effective psychological warfare is storytelling. Linebarger saw psyops as an emotionally intense, persuasive form of fiction—and, to him, no genre engaged people’s imagination better than science fiction.

David A. Graham: There is no American ‘deep state’

I pored over Linebarger’s personal papers at the Hoover Institution propaganda collection while researching my forthcoming book, Stories Are Weapons: Psychological Warfare and the American Mind . Boxes of his studies on the politics of China and Southeast Asia are filed alongside his fiction manuscripts and unpublished musings on psychology. Here, I realized, was an origin story for modern conspiracy politics, which blur the line between sci-fi plots and American patriotism—they came from a psywar operative. Put another way, an agent of what some would now call the “deep state” had devised the far-out stories that politicians like Greene use to condemn it. Perhaps, if she and others knew this, they might not be so eager to blame space lasers and vaccine microchips for what ails our nation.

U nder the pen name Cordwainer Smith, Linebarger wrote many stories about the Instrumentality, a totalitarian intergalactic empire that is toppled by rebels like Martel. Linebarger’s fiction won a cult following and was nominated for a Nebula and a Hugo, two of the most prestigious awards for science-fiction writing.

Still, Linebarger’s most significant book was undoubtedly a classified U.S. Army guide, titled simply Psychological Warfare and published under his real name. To undertake a successful influence campaign, he advised, imagine you’re inventing a character for the person you’re targeting with propaganda. Envision this subject, whom he named “Propaganda Man,” then “make up the prewar life” for him, including his “likes,” “prejudices,” and favorite “kind of gossip.” Once this Propaganda Man felt three-dimensional, as though drawn from a good story, the goal was to design a psychological operation designed to engage Propaganda Man and transmit the message that “he is your friend, you are his friend,” and “the only enemy is the enemy Leader (or generals, or emperor, or capitalists, or ‘They’).”

Previous approaches to this branch of warfare, he wrote, had relied merely on censoring the news and distributing stodgy propaganda full of “strong-faced men building dams and teaching better chicken-raising.” It would be better, Linebarger suggested, if American propaganda was as entertaining as a Laurel and Hardy movie—giving audience members a good time while teaching them that America was their ally. The character of Martel clearly resembles a Propaganda Man; the cranching wire might be the antenna on his radio, tuning in to agitprop vehicles like Voice of America that inspire him to resist his despotic overlords.

Linebarger’s military guide was foundational for the United States’ unique approach to propaganda, which has long borrowed techniques from pop culture to promote the nation’s interests. One of the early-20th-century masterminds of U.S. propaganda was a public-relations pioneer named Edward Bernays , who began his career marketing cigarettes in the 1920s and ended it helping the CIA spread misinformation about the leftist Guatemalan government in the ’50s. His idea, which shaped Linebarger’s own thinking, was that propaganda was like advertising in a popular magazine: It should push one simple message, in a persuasive and seductive style. This makes an instructive contrast with what the Rand Corporation has called Russia’s Soviet-derived “ firehose of falsehood ” strategy, whereby operatives inundate the media with lies and chaotic, contradictory stories to undermine the public’s faith in all information sources. If Russia’s motto is, in effect, “Believe nothing,” America’s has been “Believe us.” At the height of the Cold War, Linebarger was inventing a way to make people believe in America—using techniques borrowed from fantastical storytelling.

L inebarger’s father was a diplomat who worked closely with the Chinese-nationalist leader Sun Yat-Sen, who became the younger Linebarger’s godfather. Paul Linebarger himself spent a great deal of his childhood traveling in China, learning Mandarin and studying Sun’s political vision. As an adult, Linebarger made it his mission to topple the Communist regime and restore the republic that Sun had built. Although he did not accomplish this in fact, he could, as Cordwainer Smith, depict such a struggle in fiction—the Instrumentality can be read as a surreal version of China’s government under Mao Zedong. One way to understand Linebarger’s fiction is as psyops aimed partly at a Chinese Propaganda Man who might be induced to rise up against his Communist overlords.

Literary critics have pointed out references, in Linebarger’s stories, to Chinese classics such as Journey to the West and Romance of the Three Kingdoms —which makes sense in light of Linebarger’s instruction that propaganda should imitate pop culture. He wanted his stories to be engaging for people who grew up with the adventures of Sun Wukong (also known as Monkey King, the hero of Journey to the West ), as well as for those who grew up with Superman. Using the power of myth, he insinuated that liberation could come from the Christian West. In the story “The Dead Lady of Clown Town,” for example, cyborg insurrectionists use legends about the Catholic martyr Joan of Arc to persuade human-animal hybrid “underpeople” to join their fight against the rulers of the Instrumentality.

Modern conspiracy influencers have taken up Linebarger’s mantle. As the NBC reporter Ben Collins told the WNYC show On the Media in 2020, the far right in particular is “very good at storytelling. It’s world building, that’s what it is really.” World building is a term that speculative-fiction authors commonly use to describe the project of creating a fantasy realm so fully realized and all-enveloping that audiences willingly suspend their disbelief.

World building in speculative fiction and game design “is political, always,” the author and critic Laurie Penny writes. Those who imaginatively inhabit fictional worlds become intensely invested in them—which helps explain how fan debates over video games morphed into the right-wing attack pile-on known as Gamergate in 2014. But influencers on the left, too, have used fantasy fictions to advance their political cause. The creator of Wonder Woman, William Moulton Marston, famously described his strong heroine as “propaganda” for liberated women . In early issues of the comic, he even included historical sketches of real-life female scientists, explorers, and political leaders, to drive home his message that women were the equals of men.

A more recent example of world building for an ideological purpose would be the Left Behind series, by the Christian writer Jerry Jenkins and Tim LaHaye, a minister who established the prominent right-wing think tank the Council for National Policy. They found a winning formula in combining end-time fantasy—the Rapture, in evangelical teaching—with political conflicts drawn from recent history. Their best-selling books, which have sold more than 65 million copies and spawned a film franchise, helped popularize a brand of apocalyptic millenarian belief found among some MAGA extremists.

W hen Linebarger died , he left a large corpus of unpublished monographs and intelligence reports written under his own name. Most of his books for the public were science fiction, written as Cordwainer Smith (he also wrote literary fiction and thrillers, under other pseudonyms). What united these disparate interests was the mind of a person who knew that the tools of fantastical storytelling could be very effective in persuading people to build a new reality.

Brian Klaas: In MAGA world, everything happens for a reason

In Psychological Warfare , Linebarger instructed intelligence officers to combat America’s adversaries and woo new allies with propaganda that felt like science fiction. “It is the purpose that makes it propaganda,” he wrote, “and not the truthfulness or untruthfulness of it.” Of course, Linebarger was very clear about his purpose: to win people to the American way. But the world-building power of sci-fi storytelling that he championed can be adapted for very different purposes, as a weapon of mass disinformation.

I spoke with one of Linebarger’s intellectual heirs, a former psyops instructor for the Army, who told me that he and his colleagues worry a lot about psychological warfare’s “second- or third-order effects,” consequences that can be completely unintended. One such consequence is the ubiquity of conspiracy thinking, through which all of reality is converted into fiction—rather than Believe us , people will believe anything .

Linebarger could hardly have envisioned the Twilight Zone –esque tales that the Trump attorneys Rudy Giuliani and Sidney Powell spun about election fraud in 2020. But even bad science fiction can make very fine propaganda.

Giant Freakin Robot

Giant Freakin Robot

Time Travel Equation Solved By Astrophysicist

Posted: March 25, 2024 | Last updated: March 25, 2024

who created the time travel theory

After a lifetime of pursuing the idea, Physics Professor Ronald Mallett at the University of Connecticut has potentially figured out the theoretical aspects of time travel. Professor Mallett believes that black holes, rotating light, and gravitational pulls may hold the key to exploring time, but it’s all theoretical for now. There are still a lot of hurdles and limitations to handle before time travel can have real, practical applications.

<p>If this method of warp drive is achieved, there are still other limitations to consider. </p><p>If data is sent via FTL communication channels, sensors must be developed to interpret the data. In other words, step one is figuring out how to manipulate warp bubbles and send coded messages through time and space, and step two is figuring out how to make the information useful to its recipient. </p>

A Life Spent Thinking About Time Travel

Love and loss pushed Professor Mallett into an obsession with time and space. When he was 10 years old, his father passed away from a heart attack. It was his father who nourished his love of science, but H.G. Wells’ book The Time Machine pushed him towards a focus on time travel.

He was hooked from the very first paragraph of the book, “Scientific people know very well that Time is only a kind of Space. And why cannot we move in Time as we move about in the other dimensions of Space?”

That paragraph never left him, and the professor let that time travel question guide him through school and into the Professor Emeritus of Physics position at the University of Connecticut.

Artist’s rendering of a supermassive black hole

Einstein And Black Holes

As he grew up, Professor Mallett spent much of his time on Albert Einstein’s theories about black holes. While his interest in time travel only continued to grow, a potential solution never showed itself. At least, not until the professor ended up in a hospital with a heart condition.

There, lying in the hospital bed, inspiration hit him. Black holes and the gravitational fields they created were the answer to time travel. These gravitational fields had the potential to lead to time loops, which then theoretically could allow people and objects to travel back in time.

<p>As weird as it sounds, black holes spin just like planets. Much like Earth, a black hole rotates at a speed determined by its surface gravity. For every object that turns, there is a maximum rate at which it can do so, and according to Science Alert, researchers have discovered the black hole in the middle of the Milky Way is now spinning at that rate.</p>

Black Holes Manipulating Gravity

While this idea offered an ability to manipulate time, the other problem was how to use these time loops for time travel.

Professor Mallett found this time travel solution much easier than the first problem. Strong and continuous beams of light, like a ring of lasers, with a particular rotation could be used to manipulate gravity and mimic the distorting effects of a black hole.

<p>Though the details are rather complicated, the big time travel picture is a lot simpler to grasp. The professor offers a comparison to help people understand. “Let’s say you have a cup of coffee in front of you. Start stirring the coffee with the spoon. It started to spin, right? That’s what a spinning black hole does. In Einstein’s theory, space and time are related to each other. That’s why it’s called space-time. So when the black hole spins, it will actually cause time to shift.”</p>

Though the details are rather complicated, the big time travel picture is a lot simpler to grasp. The professor offers a comparison to help people understand. “Let’s say you have a cup of coffee in front of you. Start stirring the coffee with the spoon. It started to spin, right? That’s what a spinning black hole does. In Einstein’s theory, space and time are related to each other. That’s why it’s called space-time. So when the black hole spins, it will actually cause time to shift.”

<p>Professor Mallett may now have a theory on time travel and a machine to use to make it possible, but that doesn’t mean it will be here in the next few decades. </p><p>There’s still a lot to figure out to make such travel practical, such as where the insane amount of energy such a machine would require could come from, and how big the machine would need to be. </p><p>There’s also a major constraint on the machine. According to his theories, time travel would only be possible to the very beginning of when the machine was first built. In this way, it’s more like a one-way message service. You can potentially go forward quite a distance, but going back in time is limited by the machine’s creation. </p>

Much To Figure Out

Professor Mallett may now have a theory on time travel and a machine to use to make it possible, but that doesn’t mean it will be here in the next few decades.

There’s still a lot to figure out to make such travel practical, such as where the insane amount of energy such a machine would require could come from, and how big the machine would need to be.

There’s also a major constraint on the machine. According to his theories, time travel would only be possible to the very beginning of when the machine was first built. In this way, it’s more like a one-way message service. You can potentially go forward quite a distance, but going back in time is limited by the machine’s creation.

<p>The professor has made a huge leap in figuring out the theoretical aspects of time travel, but there’s a lot more to discover and quite a few hurdles and paradoxes to figure out before scientists practically start messing around in time. </p><p>Still, the theory is a step in the right direction and does suggest that people can push past what science currently considers possible. </p><p>Source: Earth.com</p>

Theoretical Aspects Of Time Travel

The professor has made a huge leap in figuring out the theoretical aspects of time travel, but there’s a lot more to discover and quite a few hurdles and paradoxes to figure out before scientists practically start messing around in time.

Still, the theory is a step in the right direction and does suggest that people can push past what science currently considers possible.

Source: Earth.com

More for You

Miss Teen USA resigns two days after Miss USA: ‘My personal values no longer fully align’

Miss Teen USA resigns two days after Miss USA: ‘My personal values no longer fully align’

FILE - South Dakota Gov. Kristi Noem speaks during the Conservative Political Action Conference, CPAC 2024, at the National Harbor, Feb. 23, 2024, in Oxon Hill, Md. Noem is now banned from entering nearly 20% of her state after two more tribes banished her this week over comments she made earlier this year about tribal leaders benefitting from drug cartels. (AP Photo/Alex Brandon, File)

Controversy follows Gov. Kristi Noem as she is banned by two more South Dakota tribes

Beauty of Malinois

20 of the Healthiest Dog Breeds with the Fewest Medical Problems

Michael Cohen

Donald Trump Prosecutors 'Know They've Got a Problem'—Legal Analyst

NBA Playoffs: 10 biggest winners and losers from Friday, including Nikola Jokic

NBA Playoffs: 10 biggest winners and losers from Friday, including Nikola Jokic

Woman doing pigeon pose stretch on the floor

You only need these five exercises to relieve tight hips, says a mobility expert

The Top 10 Friendliest Wild Animals on Earth

The Top 10 Friendliest Wild Animals on Earth

James Holzhauer Makes 'Jeopardy! Masters' History

'Jeopardy! Masters' Fans Are in Awe After James Holzhauer Broke a Show Record on Season 2

Former 49ers quarterback Alex Smith.

Bad luck, rather than the Chiefs, defeated the 49ers at the Super Bowl, according to former QB Alex Smith

What Makes a Car Worth More Used Than New?

These 10 Cars Are Actually Worth More Used Than New

Hydrogen train sets world record

Hydrogen train sets world record

CLINT HENDERSON/THE POINTS GUY

8 reasons why you should always sit in an aisle seat on planes

German Shepherd

20 Best Guard Dog Breeds that Can Keep Your Family Safe

Warning sign on a laptop

How To Remove Your Personal Data From The Internet (And Why You Should)

The author, husband Tharrow, and their two sons are shown at the children's school during a K-8 disability workshop in 2014.

I Was 'Supermom.' When I Suddenly Became Disabled, I Expected Empathy — Not This.

Loretta Swit

'M*A*S*H' star Loretta Swit says costar Jamie Farr 'still makes me laugh' 41 years after show’s wrap

stormy daniels nv

Judge Merchan Hands Donald Trump Major Legal Setback

Which major airlines offer the most seat space in economy?

The major American airline with the most room in economy—and the one with the least

The 10 Best Land Turtles to Keep as Pets

The Best Land Turtles to Keep as Pets

Woman walking outdoors in nature holding a water bottle with Get Fit with TG badge top left

I've walked 15,000 steps a day for the past 30 days — here's what I've learned

Screen Rant

Deadpool 2 created the mcu's new wolverine according to clever deadpool 3 theory.

4

Your changes have been saved

Email Is sent

Please verify your email address.

You’ve reached your account maximum for followed topics.

Wolverine's Universe's Demise In Deadpool 3 Was Caused By Spider-Man Villain According To Wild Theory

Deadpool & wolverine theory explains why deadpool 2's ending is even more important 6 years later, 10 mcu events we want deadpool & wolverine to revisit that would have change everything.

  • Hugh Jackman seems to be portraying a different version of Wolverine in Marvel Studios' upcoming Deadpool & Wolverine .
  • Hugh Jackman could be portraying the version of Wolverine from Deadpool 2's incredible post-credits sequence from X-Men Origins: Wolverine's timeline.
  • Deadpool changed the X-Men timeline in some significant ways in Deadpool 2 , which will surely be explored in Deadpool & Wolverine .

Hugh Jackman seems to be playing a new version of Wolverine in Marvel Studios' Deadpool & Wolverine , but this iteration may have already been introduced back in 2018's Deadpool 2 . Hugh Jackman was surprisingly confirmed to be joining Ryan Reynolds in Deadpool & Wolverine back in September 2022, bringing his beloved clawed X-Men member into the MCU for the first time. Hugh Jackman previously portrayed James "Logan" Howlett's Wolverine between 2000's X-Men and 2017's Logan in 20th Century Fox's X-Men franchise, but will be given a comic-accurate makeover and a new best friend in Marvel Studios' upcoming Deadpool & Wolverine .

Although he was initially believed to be returning as the incarnation of 20th Century Fox's X-Men franchise's Wolverine, Deadpool & Wolverine's first official trailer seemed to suggest that Hugh Jackman would be bringing a completely new variant into the MCU. The trailer teased something catastrophic having happened to Wolverine's world and the X-Men, making him exposed and vulnerable enough to be recruited by Deadpool and the Time Variance Authority . However, while the introduction of Jackman as a new variant of Wolverine avoids messing with Logan's emotional ending, it does raise questions about where this version of Wolverine actually comes from.

Many theories exist regarding what happened to Wolverine's universe in Deadpool 3, and one theory suggests it could be tied to a Spider-Man villain.

Deadpool & Wolverine’s Variant Returns From Deadpool 2: MCU Theory Explained

While there are many possible worlds that Deadpool & Wolverine's new version of Wolverine could have come from, one theory suggests the mutant may be the iteration from Deadpool 2's post-credits scenes . 2018's Deadpool 2 ended with Wade Wilson using Cable's time travel technology to journey through his own personal history, changing major events, and seemingly establishing many new branching timelines . As well as saving Vanessa, warning X-Force member Peter, and killing Ryan Reynolds after reading the screenplay for 2011's reviled Green Lantern , Deadpool also found himself back in the 1980s during a pivotal scene in 2009's X-Men Origins: Wolverine .

Theories suggest Hugh Jackman's new Wolverine could also come from a timeline where the Dark Phoenix wasn't stopped, from Earth-838, or from a completely different world altogether.

In one of Deadpool 2's brilliant post-credits scenes, the new-and-improved Deadpool travels back to X-Men Origins: Wolverine's timeline and kills his former self, Weapon XI. Ryan Reynolds' portrayal of Weapon XI was controversial, as it veered massively away from Marvel Comics' depiction of the merc-with-a-mouth, prompting the updated live-action Deadpool to wipe him out. Killing the version of Deadpool from X-Men: Origins: Wolverine prior to his final battle against Wolverine and Victor Creed would have changed Wolverine's subsequent timeline massively , so this could be the iteration that returns in Marvel Studios' upcoming Deadpool & Wolverine in the MCU's Phase 5.

How Did Deadpool 2’s Post-Credits Scene Change Wolverine’s Timeline?

In Deadpool 2 , Wade Wilson kills Weapon XI in the moments before the final battle between Weapon XI, Wolverine and Victor Creed. Omitting this fight sequence from the X-Men timeline would have had a major impact on Wolverine's future timeline in Fox's franchise , particularly since this could have led to Wolverine being able to safely make his exit from Three Mile Island with his memories intact. Wolverine could have simply joined the young mutants boarding Professor X's helicopter in X-Men Origins: Wolverine , perhaps allowing him to join the X-Men team two decades earlier than in the original X-Men timeline.

A new Marvel Cinematic Universe theory for the upcoming Deadpool & Wolverine makes the ending of Deadpool 2 even more shocking than it was.

Had Stryker not wiped Wolverine's memories with an adamantium bullet, the events of X-Men, X2 and X-Men: The Last Stand would have gone very differently. Deadpool & Wolverine's trailer confirmed that Wolverine was still a member of the X-Men, but this journey may have started earlier. If Deadpool & Wolverine's version of Wolverine is the same from Deadpool 2's post-credits scene, this would also explain why Wolverine seems to recognize Deadpool in the bar in Deadpool & Wolverine's trailer . This version of Wolverine is the only one who's seen the newer incarnation of Deadpool, and they only met in Deadpool 2 .

Deadpool 2 Changed The X-Men Timeline In Many Ways

As well as removing Weapon XI and perhaps freeing a different version of Wolverine, Deadpool 2's post-credits scenes also made many other changes to the X-Men timeline that may be significant in Deadpool & Wolverine . Morena Baccarin, Rob Delaney and Lewis Tan are set to return as Vanessa, Colossus and Shatterstar, respectively, despite dying in Deadpool 2 , as Deadpool saved them in the movie's post-credits scenes. Deadpool & Wolverine could also see Deadpool make jokes about the state of DC's live-action franchises following his murder of Ryan Reynolds, setting up an exciting and complex multiversal journey for the returning heroes.

Deadpool & Wolverine

A sequel to the highly successful Deadpool and Deadpool 2 starring Ryan Reynolds as the Merc with a Mouth. The third film will be the first film in the franchise to be developed under the Marvel Studios banner following Disney's acquisition of 20th Century Fox. Ryan Reynolds is returning to play the character, alongside Hugh Jackman, reprising his Wolverine role in the Marvel Cinematic Universe for the first time. 

Deadpool & Wolverine (2024)

IMAGES

  1. Time travel: Documentary looks at Stephen Hawking’s theory

    who created the time travel theory

  2. 'Einstein And Hawking: Masters Of Our Universe' Tells A Brief History

    who created the time travel theory

  3. The History of Time Travel (2014)

    who created the time travel theory

  4. Brief History of Time travel

    who created the time travel theory

  5. [THEORY] Time Travel Metaphysics/Paradoxes Infographic : timetravel

    who created the time travel theory

  6. Here's why Sandford Fleming came up with the idea of Standard time zones

    who created the time travel theory

VIDEO

  1. "Time Travel Theory" 🔮 #entrepreneurship #sidehustle #podcastclips

  2. 2 time travel theory's

  3. Time travel theory 😮

  4. time travel. theory of relativity.#viral #trending #amazingfacts #spacefact

  5. The Science Behind Time Travel

  6. EINSTEIN’S TIME TRAVEL: From CLOCKS to UNIVERSE

COMMENTS

  1. Where Does the Concept of Time Travel Come From?

    One of the first known examples of time travel appears in the Mahabharata, an ancient Sanskrit epic poem compiled around 400 B.C., Lisa Yaszek, a professor of science fiction studies at the ...

  2. Can we time travel? A theoretical physicist provides some answers

    Vox asks James Gleick, author of Time Travel: A History about the origins of the time travel and Hitler question. Time is a river. Roman emperor Marcus Aurelius wrote that: "Time is like a river ...

  3. Is Time Travel Possible?

    What does this mean for time travel? Well, according to this theory, the faster you travel, the slower you experience time. Scientists have done some experiments to show that this is true. For example, there was an experiment that used two clocks set to the exact same time. One clock stayed on Earth, while the other flew in an airplane (going ...

  4. Time travel

    The first page of The Time Machine published by Heinemann. Time travel is the hypothetical activity of traveling into the past or future.Time travel is a widely recognized concept in philosophy and fiction, particularly science fiction. In fiction, time travel is typically achieved through the use of a hypothetical device known as a time machine.The idea of a time machine was popularized by H ...

  5. Time Travel

    Time Travel. First published Thu Nov 14, 2013; substantive revision Fri Mar 22, 2024. There is an extensive literature on time travel in both philosophy and physics. Part of the great interest of the topic stems from the fact that reasons have been given both for thinking that time travel is physically possible—and for thinking that it is ...

  6. Time Travel and Modern Physics

    Time Travel and Modern Physics. First published Thu Feb 17, 2000; substantive revision Mon Mar 6, 2023. Time travel has been a staple of science fiction. With the advent of general relativity it has been entertained by serious physicists. But, especially in the philosophy literature, there have been arguments that time travel is inherently ...

  7. Time travel theories date back to the 9th Century BCE

    1895. HG Wells's The Time Machine. "The idea of time travel with volition, in either direction, didn't arrive until Wells," says Gleick. It explains that time is a dimension - something not widely ...

  8. A brief history of time travel

    In his brisk and entertaining new book, Time Travel: A History, James Gleick serves as an enthusiastic guide through the fourth dimension as seen in literature and popular culture.I spoke with ...

  9. Time Travel

    Time Travel. Time travel is commonly defined with David Lewis' definition: An object time travels if and only if the difference between its departure and arrival times as measured in the surrounding world does not equal the duration of the journey undergone by the object. For example, Jane is a time traveler if she travels away from home in ...

  10. A history of time travel: the how, the why and the when of ...

    The book was a product of its time - both in terms of the science played upon (Charles Darwin had only published Origin of the Species 35 years earlier), and the racist attitudes: it is speculated ...

  11. The mathematician who worked out how to time travel

    Mathematics suggested that time travel is physically possible - and Kurt Gödel proved it. Mathematician Karl Sigmund explains how the polymath did it. By Karl Sigmund. 5 April 2024. Gödel ...

  12. Time travel

    There are other scientific theories about time travel, including some weird physics that arise around wormholes, black holes and string theory. For the most part, though, time travel remains the ...

  13. Is Time Travel Possible?

    Time traveling to the near future is easy: you're doing it right now at a rate of one second per second, and physicists say that rate can change. According to Einstein's special theory of ...

  14. Time Travel Probably Isn't Possible—Why Do We Wish It Were?

    Time travel exerts an irresistible pull on our scientific and storytelling imagination. Since H.G. Wells imagined that time was a fourth dimension —and Einstein confirmed it—the idea of time ...

  15. Albert Einstein's Time Travel

    Visualizations of time travel have been created in movies and television, and it has also been used as an essential plot point in books and other narratives. ... Einstein's theory of time travel ...

  16. Paradox-Free Time Travel Is Theoretically Possible, Researchers Say

    According a new paper from researchers at the University of Queensland, even if time travel were possible, the paradox couldn't actually exist. Researchers ran the numbers and determined that even ...

  17. Time travel could be possible, but only with parallel timelines

    Time travel and parallel timelines almost always go hand-in-hand in science fiction, but now we have proof that they must go hand-in-hand in real science as well. General relativity and quantum ...

  18. There's One Way Time Travel Could Be Possible, According to This

    One attempt at resolving time travel paradoxes is theoretical physicist Igor Dmitriyevich Novikov's self-consistency conjecture, which essentially states that you can travel to the past, but you cannot change it. According to Novikov, if I tried to destroy my time machine five minutes in the past, I would find that it is impossible to do so.

  19. 4 Time Travel Theories and the Physics Behind Them

    Using the 'speed of light' time travel theory, building a Faster-Than-Light (FTL) Machine is the way to go. It would have to be the fastest ever man-made spaceship as it would need to travel at over 670 million mph. ... Learning Mind is a blog created by Anna LeMind, B.A., with the purpose to give you food for thought and solutions for ...

  20. 3 Popular Time Travel Theory Concepts Explained

    Reading Time: 4 minutes Time travel is one of the most popular themes in cinema.Although most time travel movies are in the sci-fi genre, every genre, even comedy, horror, and drama, have tackled complicated storylines involving time travel theory.

  21. 5 Bizarre Paradoxes Of Time Travel Explained

    The time travel paradoxes that follow fall into two broad categories: 1) ... and exists without ever being created. It is also known as an Ontological Paradox, as ontology is a branch of philosophy concerned with the nature of being or existence. ... The Butterfly Effect is a reference to Chaos Theory where seemingly trivial changes can have ...

  22. The Sci-Fi Writer Who Invented Conspiracy Theory

    It would be better, Linebarger suggested, if American propaganda was as entertaining as a Laurel and Hardy movie—giving audience members a good time while teaching them that America was their ally.

  23. Time Travel Equation Solved By Astrophysicist

    Black holes and the gravitational fields they created were the answer to time travel. These gravitational fields had the potential to lead to time loops, which then theoretically could allow ...

  24. Deadpool 2 Created The MCU's New Wolverine According To Clever Deadpool

    While there are many possible worlds that Deadpool & Wolverine's new version of Wolverine could have come from, one theory suggests the mutant may be the iteration from Deadpool 2's post-credits scenes. 2018's Deadpool 2 ended with Wade Wilson using Cable's time travel technology to journey through his own personal history, changing major events, and seemingly establishing many new branching ...