Electromagnetic Radiation

Claimed by Zoila de Leon (Fall 2023)

  • 1.1 What is a Electromagnetic(EM) Radiation?
  • 1.2 General Properties
  • 1.3 Problem Solving Method and Equations
  • 1.4 Fields Made by Charges and Fields Made by Monopoles
  • 2 The EM Spectrum
  • 3 Waves and Fields
  • 4 A Mathematical Model
  • 5 Connectedness: X-Rays
  • 6.1 Practice Problems (new section by Zoila)
  • 7 References

What is a Electromagnetic(EM) Radiation?

Electromagnetic radiation is a form of energy that is all around us and takes many forms, such as radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, and gamma rays.

Before 1873, electricity and magnetism were thought to be two different forces. However, in 1873, Scottish Physicist James Maxwell developed his famous theory of electromagnetism. There are four main electro magnetic interactions according to Maxwell:

  • The force of attraction or repulsion between electric charges is inversely proportional to the square of the distance between them
  • Magnetic poles come in pairs that attract and repel each other much as electric charges do
  • An electric current in a wire produces a magnetic field whose direction depends on the direction of the current
  • A moving electric field produces a magnetic field, and vice versa

General Properties

The four Maxwell's Equations provide a complete description of possible spatial patterns of electric and magnetic field in space.

  • The Ampere-Maxwell Law
  • Gauss's Law
  • Faraday's Law

Other than Maxwell's Four equations, there are general properties of all electromagnetic radiation:

  • Electromagnetic radiation can travel through empty space. Most other types of waves must travel through some sort of substance. For example, sound waves need either a gas, solid, or liquid to pass through in order to be heard
  • The speed of light is always a constant (3 x 10^8 m/s)
  • Wavelengths are measured between the distances of either crests or troughs. It is usually characterized by the Greek symbol λ (lambda).

Electromagnetic waves are the self-propagating, mutual oscillation of electric and magnetic fields. The propagation of electromagnetic energy is often referred to as radiation. We can also say that the 'pulse' of these moving fields result in radiation (7).

The equation for propagation is E=cB with c being the speed of light. This equation is derived from combining the two equations E=vB and B=u0e0vE, proving that v is equal to 3e8 meters/second.

Problem Solving Method and Equations

To go about solving/analyzing mathematically an electromagnetic field using Maxwell's equations,this is how we proceed (7)

  • Establish the space and time in which the electric and magnetic fields are present
  • Check that Maxwell's equations can be applied in the situation above
  • Check when the charge accelerates, it produces these fields and therefore radiation
  • Show how these fields would interact with matter

The equation of the Radiative Electric Field is: E= 1/(4πe0)*-qa/(c^2r) where a is the acceleration of the particle, c is the speed of light and r is the distance from the original location of the charge to right before the kink. This kink happens on the electric field because of the slight delay when the charge is moved.

Fields Made by Charges and Fields Made by Monopoles

We can differentiate fields made by charges and the ones made by magnetic monopoles. (7) For fields made by charges, when the charge is

  • at rest, E=1/r^2 and B=0
  • constant speed, E=1/r^2 and B=1/r^2
  • accelerating, E=1/r and B=1/r

For fields made by magnetic monopoles, the first point would have E and B switched.

The EM Spectrum

EM spectrum is a span of enormous range of wavelengths and frequencies. The EM spectrum is generally divided into 7 different regions, in order of decreasing wavelength and increasing energy and frequency. It ranges from Gamma rays to Long Radio Waves. Following are the lists of waves:

  • Visible Light
  • Infrared Rays
  • Long radio waves

em waves travel through space

Although all these waves do different things, there is one thing in common : They all travel in waves.

em waves travel through space

Infrared radiation can be released as heat or thermal energy. It can also be bounced back, which is called near infrared because of its similarities with visible light energy. Infrared Radiation is most commonly used in remote sensing as infrared sensors collect thermal energy, providing us with weather conditions.

em waves travel through space

Visible Light is the only part of the electromagnetic spectrum that humans can see with a naked eye. This part of the spectrum includes a range of different colors that all represent a particular wavelength. Rainbows are formed in this way; light passes through matter in which it is absorbed or reflected based on its wavelength. As a result, some colors are reflected more than other, leading to the creation of a rainbow.

em waves travel through space

Waves and Fields

As we learned in class, electric field is produced when an electron is accelerating. Likewise, EM radiation is created when an atomic particle, like an electron, is accelerated by an electric field. The movement like this produces oscillating electric and magnetic fields, which travel at right angles to each other in a bundle of light energy called a photon. Photons travel in a harmonic wave at the fastest speed possible in the universe.

em waves travel through space

Electromagnetic waves are formed when an electric field couples with a magnetic field. Magnetic and electric fields of an electromagnetic wave are perpendicular to each other and to the direction of the wave.

A wavelength (in m) is the distance between two consecutive peaks of a wave. Frequency is the number of waves that form in a given length of time. A wavelength and frequency are interrelated. A short wavelength indicates that the frequency will be higher because one cycle can pass in a shorter amount of time. Likewise, a longer wavelength has a lower frequency because each cycle takes longer to complete.

em waves travel through space

Waves can be classified according to their nature:

  • Mechanical waves
  • Electromagnetic waves

Mechanical Waves

Mechanical waves require a medium (matter) to travel through. Examples are sound waves, water waves, ripples in strings or springs.

Water Waves

Sound Waves

Electromagnetic Waves

Electromagnetic waves do not require a medium (matter) to travel through - they can travel through space. Examples are radio waves, visible light, x-rays.

em waves travel through space

Radio Waves

em waves travel through space

Visible Lights

em waves travel through space

A Mathematical Model

The position of the particle is defined by a sine wave:

y = ymaxsin(wt)

Where w is the angular frequency

Amplitude is the distance from the maximum vertical displacement of the wave to the middle of the wave. The Amplitude of the sinusoidal Wave is the height of the peak in the wave measured from the zero line. This measures the magnitude of oscillation of a particular wave. The Amplitude is important because it tells you the intensity or brightness of a wave in comparison with other waves.

The period of the wave is the time between crests in seconds(s).

T = 2pi/w-----(units of seconds)

Frequency is the number of cycles per second, and is expressed as sec-1 or Hertz(Hz). Frequency is directly proportional to energy and can be express as "

E = hv where E is energy, h is Planck's constant ( 6.62607*10^-34J) and v is frequency

f = 1/T f = w/2pi----(Units Hertz)

Wavelength is the distance between crests in meters. Wavelength is equal to the speed of light times frequency. Longer wavelength waves such as radio waves carry low energy; this is why we can listen to the radio without any harmful consequences. Shorter wavelength waves such as x-rays carry higher energy that can be hazardous to our health.

em waves travel through space

Wavelength and Frequency

The speed of light is the multiplication of the wavelength and frequency.

em waves travel through space

This diagram shows all properties of waves:

ENERGY FLUX

Is defined by the following equation:

Connectedness: X-Rays

Electromagnetic Radiation while commonly thought of as only including visible light, radio waves, UV waves, and gamma rays; also include X-rays. In 1895, X-rays were initially discovered by William Roentgen, who accidentally fell upon the most important discovery about his life (Figure 1). Roentgen was already working on cathode rays, and because of a fluorescent glow that occurred during his experiments, covered his experimental apparatus with heavy black paper. However, when he did this, he discovered a glow coming from a screen several feet away. Through many more experiments, he discovered that a new type of energy, not cathode rays, were the cause of the glow. He named them “x-rays” and received the 1901 Nobel Prize in Physics. Roentgen never patented his monumental discovery and as a result, numerous researchers set out to find a multitude of uses and capitalize on his work.

Primarily, people could now view objects that were hidden from plain view (i.e. scanners in airports). While X-rays are now used in 100’s of professions (security, chemistry, art galleries), its most important function is to view bones to determine abnormalities in humans. In fact, one of Roentgen’s first x-rays was of his wife’s hand (Figure 2). X-rays fall under the scope of electromagnetic radiation because, like all E.R. waves, it is comprised of photons. X-rays have wavelengths between 0.01 to 10 nanometers and fall between UV and Gamma Waves on the E.R. spectrum (Figure 3). There are two main methods in which an x-ray may be formed. Both require a vacuum-filled tube called an x-ray tube (Figure 4). With an anode on one end and a cathode on the other, an electric current is applied and a high energy electron is projected from the cathode, through the vacuum, and at the anode. In the characteristic x-ray generation approach, the electron from the cathode collides with an inner shell electron on an atom on the anode (Figure 5). Both of these electrons are ejected from the atom and an outer shell electron takes the place of the inner shell one. Because the outer electron must have a lower energy to fill the inner shell hole, it releases a photon with the equivalent energy of the difference between the two energy levels in the atom. This photon is the x-ray that is used to view objects such as bones.

In the Bremsstrahlung x-ray generation method, the electron from the cathode is slowed as it passes the nucleus of an atom at the anode (Figure 6). As it slows and its path is changed, the loses energy (kinetic energy). This energy is also released as a photon which is subsequently called an x-ray. Depending on the voltage and current of the tube and the material of the anode, different types (as in wavelengths and energy) of x-rays can be produced and each one. However, all X-rays will continue to pass through objects until it reaches a material dense that stops it. However, density of the material required depends on the energy of the x-ray. For example, during a medical x-ray, x-rays of a certain energy will pass through soft tissue (skin, organs, etc) but not through bones. The x-rays that pass through the soft tissue will strike the screen and the absence of the x-rays absorbed by the bones will cause a negative space on the screen. The areas where x-rays do not strike will form the image of the bone. While the principles remain the same, x-ray machines today use incredible sophisticated technology to specify the type of x-ray they want and have greatly increased in accuracy since Roentgen’s initial discovery.

em waves travel through space

  • Information and photographs are pulled from references 1 through 5 cited below*

Already, during the Ancient Greek and Roman times, light was studied as the presence of deflection and refraction were noticed. Electromagnetic radiation of wavelengths in the early 19th century. The discovery of infrared radiation is ascribed to astronomer William Herschel, who published his results in 1800 before the Royal Society of London. Herschel used a glass Triangular prism (optics)|prism to refract light from the Sun and detected invisible rays that caused heating beyond the red part of the spectrum, through an increase in the temperature recorded with a thermometer. These "calorific rays" were later termed infrared.

In 1801, Rohann Ritter, discovered the presence of ultraviolet light using salts. It was known that light could darken some silver halides and while doing so, he realized that the region beyond the violet bar (therefore ultraviolet) was more effective in changing the color of the halides. However,in 1864, while summarizing the theories of his time accumulating into his famous set of Maxwell equations, James Clerk Maxwell managed to deduce the speed of light being around 3e8 meters per second. This was instrumental in creating the rest of the spectrum.

In 1887-1888 Physicist Heinrich Hertz not only tried to measure the velocity and frequency of electromagnetic radiation waves at other parts of the known spectrum of the time, but he was also able to prove that Maxwell's findings were correct. He did this on the microwave radiation as well.

The discovery of X-rays occurred in 1895 by Wilhelm Rontgen when his barium platinocyanide detector screen began to glow under the presence of a discharge that passed through a cathode ray tube although the latter was completely covered. Once he determined its possible use, he tried to look at his wife's hand using this new discovery. However x-ray spectroscopy was not institutionalized until later by Karl Manne Siegbahn.

In 1900, Paul Villard discovered Gamma rays although he initially thought that they were particles similar to alpha and beta particles which were emitted during radiation. These 'particles' were later proven to be part of the electromagnetic spectrum.

Practice Problems (new section by Zoila)

em waves travel through space

1. Elert, Glenn. "X-rays." X-rays – The Physics Hypertextbook. N.p., n.d. Web. 08 Apr. 2017. http://physics.info/x-ray/

2."X-rays." X-rays. N.p., n.d. Web. 08 Apr. 2017. http://www.physics.isu.edu/radinf/xray.htm

3. "Basics of X-ray PhysicsX-ray production." Welcome to Radiology Masterclass. N.p., n.d. Web. 08 Apr. 2017. http://www.radiologymasterclass.co.uk/tutorials/physics/x-ray_physics_production#top_2nd_img

4. "X-Rays." Image: Electromagnetic Spectrum. N.p., n.d. Web. 08 Apr. 2017. https://www.boundless.com/physics/textbooks/boundless-physics-textbook/electromagnetic-waves-23/the-electromagnetic-spectrum-165/x-rays-597-11175/images/electromagnetic-spectrum/

5. "This Month in Physics History." American Physical Society. N.p., n.d. Web. 08 Apr. 2017. https://www.aps.org/publications/apsnews/200111/history.cfm

6. Editors, Spectroscopy. “The Electromagnetic Spectrum: A History.” Spectroscopy Home, 27 Oct. 2017, www.spectroscopyonline.com/electromagnetic-spectrum-history?id=&sk=&date=&&pageID=4.

7. Chabay, Ruth W., and Bruce A. Sherwood. Matter & Interaction II: Electric & Magnetic Interactions, Version 1.2. John Wiley & Sons, 2003.

Navigation menu

SciTechDaily

  • July 2, 2024 | Webb Reveals Pristine Star Clusters in an Early Universe Galaxy
  • July 2, 2024 | Quantum Breakthrough: First-Ever SPDC in Liquid Crystals Unveiled
  • July 2, 2024 | Scientists Uncover Brain-Boosting Potential of Vitamin B6
  • July 2, 2024 | Scientists Crack the Code on Broccoli’s Health Benefits
  • July 2, 2024 | Carbon Cataclysm: Scientists Shed New Light on Ancient Apocalypse That Affected the Entire Planet

Astronomy & Astrophysics 101: Electromagnetic Spectrum

By ESA/Hubble April 24, 2022

Electromagnetic Spectrum

The electromagnetic spectrum is a range of frequencies of electromagnetic radiation.

What Is the Electromagnetic Spectrum?

The electromagnetic spectrum is a range of frequencies of electromagnetic radiation. From long to short wavelength, the EM spectrum includes radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, and gamma rays.

Energy travels through space as electromagnetic (EM) waves, which are made up of oscillating electric and magnetic fields. EM waves do not require a material (such as air or water) to move through, hence they can, unlike sound, travel through empty space. All electromagnetic waves travel at the same speed in a vacuum: the speed of light (which is itself an EM wave).

An EM wave, like other waves, is defined by its wavelength, and the range of wavelengths we observe, from extremely long to very short, is referred to as the EM spectrum. The electromagnetic spectrum is loosely divided into divisions based on how the waves behave when they interact with matter, and each division is given a name. Radio waves have the longest wavelengths, followed by microwaves, infrared, visible light, ultraviolet, X-rays, and finally gamma rays, which have the shortest wavelengths. 

Celestial objects such as stars , planets , and galaxies all emit electromagnetic waves at various wavelengths, therefore telescopes are built to be sensitive to different sections of the electromagnetic spectrum. Shorter wavelengths are referred to as ‘bluer,’ while longer wavelengths are referred to as’redder.’ EM radiation in and near the visible region of the spectrum is generally referred to broadly as ‘light.’

We can construct a more complete image of an object’s structure, composition, and behavior by combining observations at different wavelengths than visible wavelengths alone can convey.

For more than three decades, Hubble has studied the Universe using its 2.4-meter (7.9-foot) primary mirror and its five science instruments. They observe primarily in the ultraviolet and visible parts of the spectrum, but also have some near- infrared capabilities. Hubble observes in different wavelength bands, one band at a time, each providing different information on the object under study. Each of these wavelengths is reproduced in a different color and these are combined to form a composite image that well resembles the true emission from that celestial object.

Multi-Wavelength and Composite Images of NGC 1512

Astronomers have used this set of single-color images, shown around the edge, to construct the color picture (center) of a ring of star clusters surrounding the core of the galaxy NGC 1512. These pictures were taken by the NASA/ESA Hubble Space Telescope’s Faint Object Camera (FOC), Wide Field and Planetary Camera 2 (WFPC2), and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Each image represents a specific color or wavelength region of the spectrum, from ultraviolet to near infrared, and shows the wide wavelength region covered by Hubble. Celestial bodies emit light at a variety of wavelengths, anywhere from gamma rays to radio waves. Astronomers chose to study NGC 1512 in these colors to emphasize important details in the ring of young star clusters surrounding the core. Credit: NASA, ESA, Dan Maoz (Tel-Aviv University, Israel, and Columbia University, USA)

By exploring the image above, you can see how astronomers have used a set of single-color images to construct the color picture of a ring of star clusters surrounding the core of the galaxy NGC 1512. Each image represents a specific color or wavelength region of the spectrum, from ultraviolet to near-infrared, and shows the wide wavelength range covered by Hubble. Astronomers chose to study NGC 1512 in these colors to emphasize important details in the ring of young star clusters surrounding the core.

Word Bank Electromagnetic Spectrum

Electromagnetic Spectrum. Credit: ESA/Hubble

Astronomers use multi-wavelength imagery to study details that might not otherwise be present in visible images. For example, a new multiwavelength observation of Jupiter released in 2020 by Hubble in ultraviolet/visible/near-infrared light of Jupiter gave researchers an entirely new view of the giant planet. These observations provided insights into the altitude and distribution of the planet’s haze and particles and showed Jupiter’s ever-changing cloud patterns. The planet’s aurorae are only visible in the ultraviolet; however, the structure of the red spot is well studied at visible wavelengths.

To celebrate the telescope’s 25th anniversary in 2015, Hubble unveiled two new beautiful portraits of the popular Pillars of Creation , revealing how different details can be studied in visible and near-infrared observations. While the visible light captures the multi-colored glow of gas clouds, the infrared image penetrates much of the obscuring dust and gas to uncover countless newborn stars.

We invite you to watch this Hubblecast that explores how Hubble’s observations differ across different wavelengths of the electromagnetic spectrum, and how these observations will be complemented by those of the James Webb Space Telescope .

More on SciTechDaily

Cat in Bed

Cats and Dogs May Catch COVID-19 From Their Owners – High Risk for Cats That Sleep on Their Owner’s Bed

TRAPPIST-1 Planetary System

Astronomy & Astrophysics 101: Habitable Zone

Tidal Disruption Event Illustration

Galactic Predators Unveiled: MIT Astronomers Spot 18 Black Holes Devouring Nearby Stars

Quantum Magnetism Concept

Chilling Discoveries: Princeton Physicists Unlock Secrets of Kinetic Magnetism

Neural Network Used to Retrieve Information From Microscope Image

New Deep Learning AI Tool Can Revolutionize Microscopy

Soyuz MS-18 Crew Ship Relocates

Advanced Housekeeping Keeps Space Station in Tip-Top Shape

Giant Impact Explains Unusual Amount of Noble Metals on the Red Planet

Giant Impact Explains Unusual Amount of Noble Metals on Mars

Spider Silk Key to New Bone-Fixing Composite

Scientists Use Spider Silk for New Biodegradable Bone-Fixing Composite

1 comment on "astronomy & astrophysics 101: electromagnetic spectrum".

em waves travel through space

“Astronomers have used this set of single-color images, shown around the edge, to construct the color picture (center) of a ring of star clusters surrounding the core of the galaxy NGC 1512.”

Because a computer display device works with just three primary colors (RGB), I would be interested in knowing just how they compressed 7 different images into three colors. Did they use band ratios or weighted averages, or some other technique?

Leave a comment Cancel reply

Email address is optional. If provided, your email will not be published or shared.

Save my name, email, and website in this browser for the next time I comment.

Introduction to Electromagnetic Waves

Chapter outline.

The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even microwave popcorn—all are brought to us by electromagnetic waves . The list of the various types of electromagnetic waves, ranging from radio transmission waves to nuclear gamma-ray ( γ γ -ray) emissions, is interesting in itself.

Even more intriguing is that all of these widely varied phenomena are different manifestations of the same thing—electromagnetic waves. (See Figure 24.2 .) What are electromagnetic waves? How are they created, and how do they travel? How can we understand and organize their widely varying properties? What is their relationship to electric and magnetic effects? These and other questions will be explored.

Misconception Alert: Sound Waves vs. Radio Waves

Many people confuse sound waves with radio waves , one type of electromagnetic (EM) wave. However, sound and radio waves are completely different phenomena. Sound creates pressure variations (waves) in matter, such as air or water, or your eardrum. Conversely, radio waves are electromagnetic waves , like visible light, infrared, ultraviolet, X-rays, and gamma rays. EM waves don’t need a medium in which to propagate; they can travel through a vacuum, such as outer space.

A radio works because sound waves played by the D.J. at the radio station are converted into electromagnetic waves, then encoded and transmitted in the radio-frequency range. The radio in your car receives the radio waves, decodes the information, and uses a speaker to change it back into a sound wave, bringing sweet music to your ears.

Discovering a New Phenomenon

It is worth noting at the outset that the general phenomenon of electromagnetic waves was predicted by theory before it was realized that light is a form of electromagnetic wave. The prediction was made by James Clerk Maxwell in the mid-19th century when he formulated a single theory combining all the electric and magnetic effects known by scientists at that time. “Electromagnetic waves” was the name he gave to the phenomena his theory predicted.

Such a theoretical prediction followed by experimental verification is an indication of the power of science in general, and physics in particular. The underlying connections and unity of physics allow certain great minds to solve puzzles without having all the pieces. The prediction of electromagnetic waves is one of the most spectacular examples of this power. Certain others, such as the prediction of antimatter, will be discussed in later modules.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
  • Authors: Paul Peter Urone, Roger Hinrichs
  • Publisher/website: OpenStax
  • Book title: College Physics 2e
  • Publication date: Jul 13, 2022
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
  • Section URL: https://openstax.org/books/college-physics-2e/pages/24-introduction-to-electromagnetic-waves

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Youtube

  • TPC and eLearning
  • What's NEW at TPC?
  • Read Watch Interact
  • Practice Review Test
  • Teacher-Tools
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Classes (Version 2)
  • Student Progress Edit
  • Task Properties
  • Export Student Progress
  • Task, Activities, and Scores
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Chemical Reactions Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Bond Energy and Reactions Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Nuclear Chemistry Preview
  • Gaining Teacher Access
  • Algebra Based Physics Course
  • Tasks and Classes
  • Tasks - Classic
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Atomic Physics
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Task Tracker Directions
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Algebra Based Physics
  • Honors Physics
  • Other Tools
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the CD
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Classes (Legacy)
  • Teacher Resources
  • Subscriptions

em waves travel through space

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law

Propagation of an Electromagnetic Wave

Electromagnetic waves are waves which can travel through the vacuum of outer space. Mechanical waves, unlike electromagnetic waves, require the presence of a material medium in order to transport their energy from one location to another. Sound waves are examples of mechanical waves while light waves are examples of electromagnetic waves.

Electromagnetic waves are created by the vibration of an electric charge. This vibration creates a wave which has both an electric and a magnetic component. An electromagnetic wave transports its energy through a vacuum at a speed of 3.00 x 10 8 m/s (a speed value commonly represented by the symbol c ). The propagation of an electromagnetic wave through a material medium occurs at a net speed which is less than 3.00 x 10 8 m/s. This is depicted in the animation below.

The mechanism of energy transport through a medium involves the absorption and reemission of the wave energy by the atoms of the material. When an electromagnetic wave impinges upon the atoms of a material, the energy of that wave is absorbed. The absorption of energy causes the electrons within the atoms to undergo vibrations. After a short period of vibrational motion, the vibrating electrons create a new electromagnetic wave with the same frequency as the first electromagnetic wave. While these vibrations occur for only a very short time, they delay the motion of the wave through the medium. Once the energy of the electromagnetic wave is reemitted by an atom, it travels through a small region of space between atoms. Once it reaches the next atom, the electromagnetic wave is absorbed, transformed into electron vibrations and then reemitted as an electromagnetic wave. While the electromagnetic wave will travel at a speed of c (3 x 10 8 m/s) through the vacuum of interatomic space, the absorption and reemission process causes the net speed of the electromagnetic wave to be less than c. This is observed in the animation below.

The actual speed of an electromagnetic wave through a material medium is dependent upon the optical density of that medium. Different materials cause a different amount of delay due to the absorption and reemission process. Furthermore, different materials have their atoms more closely packed and thus the amount of distance between atoms is less. These two factors are dependent upon the nature of the material through which the electromagnetic wave is traveling. As a result, the speed of an electromagnetic wave is dependent upon the material through which it is traveling.

For more information on physical descriptions of waves, visit The Physics Classroom Tutorial . Detailed information is available there on the following topics:

Mechanical vs. Electromagnetic Waves Wavelike Behaviors of Light The EM and Visible Spectra Light Absorption, Reflection, and Transmission Optical Density and Light Speed  

Return to List of Animations

ESA/Webb logo

Electromagnetic spectrum

The electromagnetic spectrum is a range of wavelengths of electromagnetic radiation. From long to short wavelength, the EM spectrum includes radio waves, microwaves, infrared, visible light, ultraviolet, x-rays and gamma rays.

Energy is propagated through space in the form of electromagnetic (EM) waves, which are composed of oscillating electric and magnetic fields. EM waves do not require a substance (like air or water) to travel through, meaning that — unlike sound — they can travel through empty space. In a vacuum, all EM waves travel at the same speed: the speed of light (which is itself an EM wave). Like all waves, an EM wave is characterised by its wavelength, and the range of wavelengths we observe, from very long to very short, is what we refer to as the EM spectrum. We divide up the EM spectrum roughly according to how the waves behave when they interact with matter and each division has a name. So we have: radio waves, which have the longest wavelengths; microwaves; infrared; visible light; ultraviolet; x-rays; and finally gamma rays, which have the shortest wavelengths. Celestial objects such as stars, planets and galaxies all emit EM waves at various wavelengths and so different telescopes are designed to be sensitive to different parts of the EM spectrum. EM radiation in and around the visible part of the spectrum is often referred to broadly as ‘light’, with shorter wavelengths referred to as ‘bluer’ and longer wavelengths referred to as ‘redder’.

By combining observations at different wavelengths, we can develop a more complete picture of the structure, composition and behaviour of an object than visible wavelengths alone can show. This makes Webb especially important, alongside existing telescopes such as the NASA/ESA Hubble Space Telescope . Webb's sensitive instruments provide excellent coverage of near- and mid-infrared wavelengths, enabling high-quality research into celestial objects that emit this kind of light, and providing critical extra details about targets also being studied at longer and shorter wavelengths.

The eighteen hexagonal mirrors that together make up Webb's primary mirror are coated in a thin layer of gold. This gives the telescope a distinctive look, but more importantly it's perfect for reflecting the infrared wavelengths to which Webb's instruments are sensitive. Webb has four instruments which all work in the infrared range: MIRI , which detects mid-infrared light, and NIRSpec ,  NIRCam and NIRISS , which are all sensitive to near-infrared light.

Even before cooperating with other telescopes, MIRI and NIRCam are frequently used together to obtain a more complete picture of a target over the whole of Webb's wavelength range. This image of the Pillars of Creation shows the different details which are highlighted in the different wavelength ranges — stars, particularly newly-formed stars, show up in near-infrared, while dust is placed on display by MIRI.

The Phantom Galaxy Across the Spectrum

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • JetStream home
  • Layers of the Atmosphere
  • Air Pressure
  • The Transfer of Heat Energy
  • Energy Balance
  • Hydrologic Cycle
  • Precipitation
  • Layers of the Ocean
  • Ocean Circulations
  • The Sea Breeze
  • The Marine Layer
  • Rip Current Safety
  • Global Atmospheric Circulations
  • The Jet Stream
  • Climate vs. Weather
  • Climate Zones
  • How clouds form
  • The Core Four
  • The Basic Ten
  • Cloud Chart
  • Color of Clouds
  • Parcel Theory
  • Stability-Instability
  • Radiosondes
  • Skew-T Log-P Diagrams
  • Skew-T Plots
  • Skew-T Examples
  • Pressure vs. Elevation
  • Longwaves and Shortwaves
  • Basic Wave Patterns
  • Common Features
  • Thickness Charts
  • Weather Models
  • Surface Weather Plots
  • Norwegian Cyclone Model
  • Types of Weather Phenomena

Electromagnetic waves

  • The Atmospheric Window
  • Weather Satellites
  • How radar works
  • Volume Coverage Patterns (VCP)
  • Radar Images: Reflectivity
  • Radar Images: Velocity
  • Radar Images: Precipitation
  • Inter-Tropical Convergence Zone
  • Classification
  • NHC Forecasts
  • Hazards & Safety
  • Damage Potential
  • ENSO Pacific Impacts
  • ENSO Weather Impacts
  • Ingredients for a Thunderstorm
  • Life Cycle of a Thunderstorm
  • Types of Thunderstorms
  • Hazard: Hail
  • Hazard: Damaging wind
  • Hazard: Tornadoes
  • Hazard: Flash Floods
  • Staying Ahead of the Storms
  • How Lightning is Created
  • The Positive and Negative Side of Lightning
  • The Sound of Thunder
  • Lightning Safety
  • Frequently Asked Questions
  • Types of Derechos
  • Where and When
  • Notable Derechos
  • Keeping Yourself Safe
  • Historical Context
  • Causes: Earthquakes
  • Causes: Landslides
  • Causes: Volcanoes
  • Causes: Weather
  • Propagation
  • Detection, Warning, and Forecasting
  • Preparedness and Mitigation: Communities
  • Preparedness and Mitigation: Individuals (You!)
  • Select NOAA Tsunami Resources
  • Weather Forecast Offices
  • River Forecast Centers
  • Center Weather Service Units
  • Regional Offices
  • National Centers for Environmental Prediction
  • NOAA Weather Radio
  • NWS Careers: Educational Requirements
  • Weather Glossary
  • Weather Acronyms
  • Learning Lessons

Electromagnetic waves are a form of radiation that travel though the universe. They are formed when an electric field (Fig. 1 red arrows) couples with a magnetic field (Fig.1 blue arrows).

Both electricity and magnetism can be static (respectively, what holds a balloon to the wall or a refrigerator magnet to metal), but when they change or move together, they make waves. Magnetic and electric fields of an electromagnetic wave are perpendicular to each other and to the direction of the wave.

Unlike sound waves, which must travel through matter by bumping molecules into each other like dominoes (and thus can not travel through a vacuum like space), electromagnetic waves do not need molecules to travel. They can travel through air, solid objects, and even space, making them very useful for a lot of technologies.

When you listen to the radio, connect to a wireless network, or cook dinner in a microwave oven, you are using electromagnetic waves. Radio waves and microwaves are two types of electromagnetic waves. They only differ from each other in wavelength – the distance between one wave crest to the next.

While most of this energy is invisible to us, we can see the range of wavelengths that we call light. This visible part of the electromagnetic spectrum consists of the colors that we see in a rainbow – red, orange, yellow, green, blue, indigo, and violet. Each of these colors also corresponds to a different measurable wavelength of light.

Waves in the electromagnetic spectrum vary in size from very long radio waves that are the length of buildings to very short gamma-rays that are smaller than the nucleus of an atom.

Their size is related to their energy. The smaller the wavelength, the higher the energy. For example, a brick wall blocks the relatively larger and lower-energy wavelengths of visible light but not the smaller, more energetic x-rays. A denser material such as lead, however, can block x-rays.

While it’s commonly said that waves are "blocked" by certain materials, the correct understanding is that wavelengths of energy are absorbed by the material. This understanding is critical to interpreting data from weather satellites because the atmosphere also absorbs some wavelengths while allowing others to pass through.

NASA Logo

Introduction to the Electromagnetic Spectrum

What is Electromagnetic energy?

Electromagnetic energy travels in waves and spans a broad spectrum from very long radio waves to very short gamma rays. The human eye can only detect only a small portion of this spectrum called visible light. A radio detects a different portion of the spectrum, and an x-ray machine uses yet another portion. NASA's scientific instruments use the full range of the electromagnetic spectrum to study the Earth, the solar system, and the universe beyond.

When you tune your radio, watch TV, send a text message, or pop popcorn in a microwave oven, you are using electromagnetic energy. You depend on this energy every hour of every day. Without it, the world you know could not exist.

A diagram of the electromagnetic spectrum showing the 7 regions of the spectrum (from longest to shortest wavelength):  radio waves, microwave, infrared, visible, ultraviolet, x-ray, and gamma rays. Examples of radio waves include fm & am radio frequencies. Mircrowaves are used in microwave ovens and their lengths are about the size of a baseball. Infrared waves are much shorter – about the size of a thickness of paper. The heat energy that radiates off human and other animals is in the infrared region.

Our Protective Atmosphere

Our Sun is a source of energy across the full spectrum, and its electromagnetic radiation bombards our atmosphere constantly. However, the Earth's atmosphere protects us from exposure to a range of higher energy waves that can be harmful to life. Gamma rays, x-rays, and some ultraviolet waves are "ionizing," meaning these waves have such a high energy that they can knock electrons out of atoms. Exposure to these high-energy waves can alter atoms and molecules and cause damage to cells in organic matter. These changes to cells can sometimes be helpful, as when radiation is used to kill cancer cells, and other times not, as when we get sunburned.

Atmospheric Windows

Image of NASA Spacecraft RHESSI

Electromagnetic radiation is reflected or absorbed mainly by several gases in the Earth's atmosphere, among the most important being water vapor, carbon dioxide, and ozone. Some radiation, such as visible light, largely passes (is transmitted) through the atmosphere. These regions of the spectrum with wavelengths that can pass through the atmosphere are referred to as "atmospheric windows." Some microwaves can even pass through clouds, which make them the best wavelength for transmitting satellite communication signals.

While our atmosphere is essential to protecting life on Earth and keeping the planet habitable, it is not very helpful when it comes to studying sources of high-energy radiation in space. Instruments have to be positioned above Earth's energy-absorbing atmosphere to "see" higher energy and even some lower energy light sources such as quasars.

Next: Anatomy of an Electromagnetic Wave

National Aeronautics and Space Administration, Science Mission Directorate. (2010). Introduction to the Electromagnetic Spectrum. Retrieved [insert date - e.g. August 10, 2016] , from NASA Science website: http://science.nasa.gov/ems/01_intro

Science Mission Directorate. "Introduction to the Electromagnetic Spectrum" NASA Science . 2010. National Aeronautics and Space Administration. [insert date - e.g. 10 Aug. 2016] http://science.nasa.gov/ems/01_intro

Discover More Topics From NASA

James Webb Space Telescope

The image is divided horizontally by an undulating line between a cloudscape forming a nebula along the bottom portion and a comparatively clear upper portion. Speckled across both portions is a starfield, showing innumerable stars of many sizes. The smallest of these are small, distant, and faint points of light. The largest of these appear larger, closer, brighter, and more fully resolved with 8-point diffraction spikes. The upper portion of the image is blueish, and has wispy translucent cloud-like streaks rising from the nebula below. The orangish cloudy formation in the bottom half varies in density and ranges from translucent to opaque. The stars vary in color, the majority of which have a blue or orange hue. The cloud-like structure of the nebula contains ridges, peaks, and valleys – an appearance very similar to a mountain range. Three long diffraction spikes from the top right edge of the image suggest the presence of a large star just out of view.

Perseverance Rover

em waves travel through space

Parker Solar Probe

em waves travel through space

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

NASA’s Webb Captures Celestial Fireworks Around Forming Star

NASA’s Webb Captures Celestial Fireworks Around Forming Star

This artist’s concept depicts an asteroid drifting through space

NASA Asteroid Experts Create Hypothetical Impact Scenario for Exercise

six red dots in this composite picture indicate the location of six sequential detections of the first near-Earth object

NASA’s NEOWISE Infrared Heritage Will Live On

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

A temperature map of Phoenix, Arizona on June 19, 2024, showing various areas with temperature ranges from 124°F to above 140°F. The map includes neighborhoods and landmarks like Sky Harbor Airport.

NASA’s ECOSTRESS Maps Burn Risk Across Phoenix Streets

Expedition 71 Flight Engineer and NASA astronaut Mike Barratt processes brain organoid samples inside the Life Science Glovebox for a neurodegenerative disorder study. Doctors will use the results from the investigation to learn how protect a crew member’s central nervous system and provide treatments for neurodegenerative conditions on Earth.

NASA Shares Use Requirements with Commercial Destination Partners

Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert

Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert

A view of SpaceX's Crew Dragon spacecraft docked to the International Space Station.

In Space Production Applications News

Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere

Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere

Smoke billows from the fires burning in Florida in 1998

The 1998 Florida Firestorm and NASA’s Kennedy Space Center

What’s Up: July 2024 Skywatching Tips from NASA

What’s Up: July 2024 Skywatching Tips from NASA

A woman seen reflected in a large mirror

Bente Eegholm: Ensuring Space Telescopes Have Stellar Vision

Hubble Examines an Active Galaxy Near the Lion’s Heart

Hubble Examines an Active Galaxy Near the Lion’s Heart

Front cover for A Wartime Necessity book

A Wartime Necessity

A man in a tan flight suit with black boots sits in a black seat on top of a metal platform below. He is strapped into the seat and wears a black headset and black, large goggles. He is tilted in the seat where the left side is angled down and the right side is angled up due to the motion of the simulator seat.

NASA Prepares for Air Taxi Passenger Comfort Studies

An artist concept of a skinny, rectangular hypersonic vehicle with delta wings and the NASA logo, covered in black tiles.

Hypersonic Technology Project

SWO

Amendment 22: Heliophysics Flight Opportunities in Research and Technology Final Text and Due Date

Helping student’s Summer Slide With NASA STEM. Three young students, a girl and two boys, having fun while they blow into straws to launch their soda-straw rockets.

Slow Your Student’s ‘Summer Slide’ and Beat Boredom With NASA STEM

Four NASA personnel in black jumpsuits stand outside and smile with their arms outstretched. The background features a bright blue sky with scattered clouds and some buildings.

Mission Success: HERA Crew Successfully Completes 45-Day Simulated Journey to Mars 

NASA Astronaut Official Portrait Frank Rubio

Astronauta de la NASA Frank Rubio

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

Spectrum overview.

The headshot image of Jermaine Walker

Jermaine Walker

What is the spectrum made of, how is the spectrum used , what is electromagnetic energy, characteristics, analog vs. digital.

Virtually every endeavor that NASA undertakes requires communications or data transfer via the electromagnetic spectrum. NASA relies solely on Space Communications and Navigation (SCaN) to provide this vital service to all of its missions. Today and in the coming years, NASA will implement programs encompassing space exploration, scientific research, technology development, and all of these efforts will need access to this limited resource.

The  electromagnetic spectrum is comprised of all frequencies  of electromagnetic radiation that propagate energy and travel through space in the form of waves. Longer wavelengths with lower frequencies make up the  radio spectrum . Shorter wavelengths with higher frequencies make up the  optical spectrum.  The portion of the spectrum that humans can see is called the visible spectrum. However, NASA utilizes a number of tools that allow us to communicate and create images utilizing almost every single component of the electromagnetic spectrum in one way or another.

People use the electromagnetic spectrum every day. The car radio, television, smart phone and microwave are just a few examples of the electromagnetic spectrum used every day.

Frequency  and  wavelength  are both forms of electromagnetic energy. Frequency refers to the number of crests that pass a give point. One wave, or cycle, per second, is called a Hertz (Hz). Wavelength refers to the distance between crests and they range in size from very small to very big as seen in the illustration below. Electromagnetic energy travels in waves and spans a broad spectrum from very long radio waves to very short gamma rays. Electromagnetic waves do not need a medium in order to propagate, which means they can travel through air, solid materials, and also through the vacuum of space. 

spectrum_radio_waves_graphic

The characteristics of the electromagnetic spectrum are the propagation features and the amount of information, which signals can carry. In general, signals sent using the higher frequencies have shorter propagation distances but a higher data-carrying capacity. These physical characteristics of the spectrum limit the range of applications for which any particular band is suitable. Some spectrum (such as in the (UHF) band 300-3000 MHz) is known to be suitable for a wide variety of services and is in great demand.

There are two important types of transmissions to understand:  analog and digital . Analog signal transmission information (sound, video, or data) travels in a continuous wave whose strength and frequency vary directly with a changing physical quantity at the source. Digital signal transmission information is converted to ones and zeros which are formatted and sent as electrical pulses. Advantages of using digital signals include greater accuracy, noise reduction (unwanted signals) and an increased capacity for sending information.

spectrum_analog_digital_web

Electromagnetic spectrum is a limited natural resource. The spectrum waves naturally propagate outward in all directions. Transmitters can be focused to transmit their signals to a single specified location. Likewise, receivers can be focused to maximize signal reception. The receiving antenna may still detect unintended signals that can interfere with the reception of the intended signal. To avoid signal interference problems, multiple users cannot transmit radio signals at the same frequencies, at the same time in the same direction. As soon as one user stops transmitting signals over a portion of the spectrum, another can immediately re-use it. The spectrum is scarce; at any given time and place, one use of a frequency precludes its use for any other purpose.

IMAGES

  1. Visualizing the propagation path of electromagnetic waves from space to

    em waves travel through space

  2. PPT

    em waves travel through space

  3. PPT

    em waves travel through space

  4. How Does Electromagnetic Energy Travel

    em waves travel through space

  5. PROPAGATION OF ELECTROMAGNETIC WAVES PART 01

    em waves travel through space

  6. How is electromagnetic radiation used to provide information about the

    em waves travel through space

VIDEO

  1. Propagation of EM waves in Dielectric Media // Unbounded Media // The Physics Family

  2. How are Gravitational waves detected??

  3. 10.2. EM Waves in General (Example)

  4. InnoSpaceTool 3: Electromagnetic Waves

  5. What speed do EM waves travel?

  6. Where do radio waves go?

COMMENTS

  1. 23.2: Electromagnetic Waves and their Properties

    Maxwell's correction shows that self-sustaining electromagnetic waves (light) can travel through empty space even in the absence of moving charges or currents, with the electric field component and magnetic field component each continually changing and each perpetuating the other. ... Electromagnetic Wave: Electromagnetic waves are a self ...

  2. Anatomy of an Electromagnetic Wave

    This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space. In the 1860's and 1870's, a Scottish scientist named James Clerk Maxwell developed a scientific theory to explain electromagnetic waves. He noticed that electrical fields and magnetic fields can couple together to ...

  3. Light: Electromagnetic waves, the electromagnetic spectrum and photons

    Electromagnetic radiation is one of the many ways that energy travels through space. The heat from a burning fire, the light from the sun, the X-rays used by your doctor, as well as the energy used to cook food in a microwave are all forms of electromagnetic radiation. While these forms of energy might seem quite different from one another ...

  4. Electromagnetic radiation

    In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy.. Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields.In a vacuum, electromagnetic waves travel at the speed of light ...

  5. Electromagnetic Radiation

    Electromagnetic radiation can travel through empty space. Most other types of waves must travel through some sort of substance. For example, sound waves need either a gas, solid, or liquid to pass through in order to be heard; The speed of light is always a constant (3 x 10^8 m/s)

  6. Chapter 6: Electromagnetics

    Electromagnetic radiation (radio waves, light, etc.) consists of interacting, self-sustaining electric and magnetic fields that propagate through empty space at 299,792 km per second (the speed of light, c), and slightly slower through air and other media.Thermonuclear reactions in the cores of stars (including the Sun) provide the energy that eventually leaves stars, primarily in the form of ...

  7. 16.2: Maxwell's Equations and Electromagnetic Waves

    The Mechanism of Electromagnetic Wave Propagation. To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic waves that propagate through space, imagine a time-varying magnetic field \(\vec{B}_0(t)\) produced by the high-frequency alternating current seen in Figure \(\PageIndex{3}\).

  8. 16.3: Plane Electromagnetic Waves

    The physics of traveling electromagnetic fields was worked out by Maxwell in 1873. He showed in a more general way than our derivation that electromagnetic waves always travel in free space with a speed given by Equation \ref{16.18}. If we evaluate the speed \(c = \dfrac{1}{\sqrt{\epsilon_0\mu_0}}\), we find that

  9. 13.1: Electromagnetic Waves

    An electromagnetic wave begins when an electrically charged particle vibrates. This causes a vibrating electric field, which in turn creates a vibrating magnetic field. The two vibrating fields together form an electromagnetic wave. An electromagnetic wave is a transverse wave that can travel across space as well as through matter.

  10. How do EM waves propagate?

    Are the EM fields really moving. Classically, electromagnetic waves are propagating disturbances in the electric and magnetic fields. Remember, the electric field of a point charge extends to infinity. It does not simply stop somewhere. When the point charge is briefly accelerated, a disturbance in the field (and the associated magnetic field ...

  11. Astronomy & Astrophysics 101: Electromagnetic Spectrum

    The electromagnetic spectrum is a range of frequencies of electromagnetic radiation. From long to short wavelength, the EM spectrum includes radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, and gamma rays. Energy travels through space as electromagnetic (EM) waves, which are made up of oscillating electric and magnetic fields.

  12. Ch. 24 Introduction to Electromagnetic Waves

    Conversely, radio waves are electromagnetic waves, like visible light, infrared, ultraviolet, X-rays, and gamma rays. EM waves don't need a medium in which to propagate; they can travel through a vacuum, such as outer space. A radio works because sound waves played by the D.J. at the radio station are converted into electromagnetic waves ...

  13. The Electromagnetic Spectrum

    All light, or electromagnetic radiation, travels through space at 186,000 miles (300,000 kilometers) per second — the speed of light. That's about as far as a car will go over its lifetime, traveled by light in a single second! How We Measure Light. Light travels in waves, much like the waves you find in the ocean.

  14. The Physics Classroom Website

    Propagation of an Electromagnetic Wave. Electromagnetic waves are waves which can travel through the vacuum of outer space. Mechanical waves, unlike electromagnetic waves, require the presence of a material medium in order to transport their energy from one location to another. Sound waves are examples of mechanical waves while light waves are ...

  15. Electromagnetic spectrum

    The electromagnetic spectrum is a range of wavelengths of electromagnetic radiation. From long to short wavelength, the EM spectrum includes radio waves, microwaves, infrared, visible light, ultraviolet, x-rays and gamma rays. Energy is propagated through space in the form of electromagnetic (EM) waves, which are composed of oscillating ...

  16. Electromagnetic waves

    The speed of any electromagnetic waves in free space is the speed of light c = 3*10 8 m/s. Electromagnetic waves can have any wavelength λ or frequency f as long as λf = c. When electromagnetic waves travel through a medium, the speed of the waves in the medium is v = c/n(λ free), where n(λ free) is the

  17. 16: Electromagnetic Waves

    16.3: Plane Electromagnetic Waves Mechanical waves travel through a medium such as a string, water, or air. Perhaps the most significant prediction of Maxwell's equations is the existence of combined electric and magnetic (or electromagnetic) fields that propagate through space as electromagnetic waves.

  18. Electromagnetic waves

    They can travel through air, solid objects, and even space, making them very useful for a lot of technologies. When you listen to the radio, connect to a wireless network, or cook dinner in a microwave oven, you are using electromagnetic waves. Radio waves and microwaves are two types of electromagnetic waves. They only differ from each other ...

  19. visible light

    0. Since, electro magnetic waves have electric and magnetic vector. Due to this EM waves show electric and magnetic field. An electric and magnetic field have no need a medium to show thier effect. Hence in the presence of electric and magnetic field vector which vibrate perpendeculer to each other and get pertervation EM waves travels in vacuum.

  20. Introduction to the Electromagnetic Spectrum

    What is Electromagnetic energy? Electromagnetic energy travels in waves and spans a broad spectrum from very long radio waves to very short gamma rays. The human eye can only detect only a small portion of this spectrum called visible light. A radio detects a different portion of the spectrum, and an x-ray machine uses yet another portion.

  21. Electromagnetic waves and the electromagnetic spectrum

    And the speed at which these waves travel is the speed of light, c, and by c I mean three times 10 to the eight meters per second, because light is just and Electromagnetic wave, light is a special example, one particular example of Electromagnetic waves, but it is only one example, these waves can have any wavelength.

  22. EM waves and the electromagnetic spectrum

    can travel through a vacuum close vacuum A volume that contains no matter. such as in space travel at the same speed through a vacuum or the air Electromagnetic waves travel at 300,000,000 metres ...

  23. Spectrum Overview

    The electromagnetic spectrum is comprised of all frequencies of electromagnetic radiation that propagate energy and travel through space in the form of waves. Longer wavelengths with lower frequencies make up the radio spectrum.Shorter wavelengths with higher frequencies make up the optical spectrum. The portion of the spectrum that humans can see is called the visible spectrum.

  24. Why a signal (EM wave) atteuates exponentially when travelling in a

    One reason is that the exponential expression gives the same result wherever you start. If going from 0m to 1m gives a ratio of 0.1, then going from 1m to 2 m will give 0.1, and so will going from ...